def test_slicemonitor(self): ''' Test whether the slicemonitor works as excpected, use the mock slicer ''' nslices = 3 mock_slicer = self.generate_mock_slicer(nslices) mock_bunch = self.generate_mock_bunch() slice_monitor = SliceMonitor(filename=self.s_fn, n_steps=self.n_turns, slicer=mock_slicer, buffer_size=11, write_buffer_every=9, slice_stats_to_store=['propertyA'], bunch_stats_to_store=['mean_x', 'macrop']) for i in xrange(self.n_turns): slice_monitor.dump(mock_bunch) s = hp.File(self.s_fn + '.h5') sd = s['Slices'] sb = s['Bunch'] self.assertTrue(np.allclose(sb['mean_x'], np.arange(start=1, stop=self.n_turns+0.5))) self.assertTrue(np.allclose(sb['macrop'], 99*np.ones(self.n_turns))) for k in xrange(nslices): for j in xrange(self.n_turns): self.assertTrue(np.allclose(sd['propertyA'][k,j], k + (j+1)*1000), 'Slices part of SliceMonitor wrong')
def init_master(self): # Manage multi-job operation if pp.footprint_mode: if pp.N_turns != pp.N_turns_target: raise ValueError( 'In footprint mode you need to set N_turns_target=N_turns_per_run!' ) import Save_Load_Status as SLS SimSt = SLS.SimulationStatus(N_turns_per_run=pp.N_turns, check_for_resubmit=True, N_turns_target=pp.N_turns_target) SimSt.before_simulation() self.SimSt = SimSt # generate a bunch if pp.footprint_mode: self.bunch = self.machine.generate_6D_Gaussian_bunch_matched( n_macroparticles=pp.n_macroparticles_for_footprint_track, intensity=pp.intensity, epsn_x=pp.epsn_x, epsn_y=pp.epsn_y, sigma_z=pp.sigma_z) elif SimSt.first_run: self.bunch = self.machine.generate_6D_Gaussian_bunch_matched( n_macroparticles=pp.n_macroparticles, intensity=pp.intensity, epsn_x=pp.epsn_x, epsn_y=pp.epsn_y, sigma_z=pp.sigma_z) # compute initial displacements inj_opt = self.machine.transverse_map.get_injection_optics() sigma_x = np.sqrt(inj_opt['beta_x'] * pp.epsn_x / self.machine.betagamma) sigma_y = np.sqrt(inj_opt['beta_y'] * pp.epsn_y / self.machine.betagamma) x_kick = pp.x_kick_in_sigmas * sigma_x y_kick = pp.y_kick_in_sigmas * sigma_y # apply initial displacement if not pp.footprint_mode: self.bunch.x += x_kick self.bunch.y += y_kick print 'Bunch initialized.' else: print 'Loading bunch from file...' with h5py.File( 'bunch_status_part%02d.h5' % (SimSt.present_simulation_part - 1), 'r') as fid: self.bunch = self.buffer_to_piece( np.array(fid['bunch']).copy()) print 'Bunch loaded from file.' # initial slicing self.slicer = UniformBinSlicer(n_slices=pp.n_slices, z_cuts=(-pp.z_cut, pp.z_cut)) # define a bunch monitor from PyHEADTAIL.monitors.monitors import BunchMonitor self.bunch_monitor = BunchMonitor( 'bunch_evolution_%02d' % self.SimSt.present_simulation_part, pp.N_turns, {'Comment': 'PyHDTL simulation'}, write_buffer_every=3) # define a slice monitor from PyHEADTAIL.monitors.monitors import SliceMonitor self.slice_monitor = SliceMonitor( 'slice_evolution_%02d' % self.SimSt.present_simulation_part, pp.N_turns, self.slicer, {'Comment': 'PyHDTL simulation'}, write_buffer_every=3) #slice for the first turn slice_obj_list = self.bunch.extract_slices(self.slicer) pieces_to_be_treated = slice_obj_list print 'N_turns', self.N_turns if pp.footprint_mode: self.recorded_particles = ParticleTrajectories( pp.n_macroparticles_for_footprint_track, self.N_turns) return pieces_to_be_treated
class Simulation(object): def __init__(self): self.N_turns = pp.N_turns def init_all(self): self.n_slices = pp.n_slices # read the optics if needed if pp.optics_pickle_file is not None: with open(pp.optics_pickle_file) as fid: optics = pickle.load(fid) self.n_kick_smooth = np.sum( ['_kick_smooth_' in nn for nn in optics['name']]) else: optics = None self.n_kick_smooth = pp.n_segments # define the machine from LHC_custom import LHC self.machine = LHC(n_segments=pp.n_segments, machine_configuration=pp.machine_configuration, beta_x=pp.beta_x, beta_y=pp.beta_y, accQ_x=pp.Q_x, accQ_y=pp.Q_y, Qp_x=pp.Qp_x, Qp_y=pp.Qp_y, octupole_knob=pp.octupole_knob, optics_dict=optics) self.n_segments = self.machine.transverse_map.n_segments # compute sigma inj_opt = self.machine.transverse_map.get_injection_optics() sigma_x_inj = np.sqrt(inj_opt['beta_x'] * pp.epsn_x / self.machine.betagamma) sigma_y_inj = np.sqrt(inj_opt['beta_y'] * pp.epsn_y / self.machine.betagamma) if pp.optics_pickle_file is None: sigma_x_smooth = sigma_x_inj sigma_y_smooth = sigma_y_inj else: beta_x_smooth = None beta_y_smooth = None for ele in self.machine.one_turn_map: if ele in self.machine.transverse_map: if '_kick_smooth_' in ele.name1: if beta_x_smooth is None: beta_x_smooth = ele.beta_x1 beta_y_smooth = ele.beta_y1 else: if beta_x_smooth != ele.beta_x1 or beta_y_smooth != ele.beta_y1: raise ValueError( 'Smooth kicks must have all the same beta') if beta_x_smooth is None: sigma_x_smooth = None sigma_y_smooth = None else: sigma_x_smooth = np.sqrt(beta_x_smooth * pp.epsn_x / self.machine.betagamma) sigma_y_smooth = np.sqrt(beta_y_smooth * pp.epsn_y / self.machine.betagamma) # define MP size nel_mp_ref_0 = pp.init_unif_edens_dip * 4 * pp.x_aper * pp.y_aper / pp.N_MP_ele_init_dip # prepare e-cloud import PyECLOUD.PyEC4PyHT as PyEC4PyHT if pp.custom_target_grid_arcs is not None: target_grid_arcs = pp.custom_target_grid_arcs else: target_grid_arcs = { 'x_min_target': -pp.target_size_internal_grid_sigma * sigma_x_smooth, 'x_max_target': pp.target_size_internal_grid_sigma * sigma_x_smooth, 'y_min_target': -pp.target_size_internal_grid_sigma * sigma_y_smooth, 'y_max_target': pp.target_size_internal_grid_sigma * sigma_y_smooth, 'Dh_target': pp.target_Dh_internal_grid_sigma * sigma_x_smooth } self.target_grid_arcs = target_grid_arcs if pp.enable_arc_dip: ecloud_dip = PyEC4PyHT.Ecloud( slice_by_slice_mode=True, L_ecloud=self.machine.circumference / self.n_kick_smooth * pp.fraction_device_dip, slicer=None, Dt_ref=pp.Dt_ref, pyecl_input_folder=pp.pyecl_input_folder, chamb_type=pp.chamb_type, x_aper=pp.x_aper, y_aper=pp.y_aper, filename_chm=pp.filename_chm, PyPICmode=pp.PyPICmode, Dh_sc=pp.Dh_sc_ext, N_min_Dh_main=pp.N_min_Dh_main, f_telescope=pp.f_telescope, N_nodes_discard=pp.N_nodes_discard, target_grid=target_grid_arcs, init_unif_edens_flag=pp.init_unif_edens_flag_dip, init_unif_edens=pp.init_unif_edens_dip, N_mp_max=pp.N_mp_max_dip, nel_mp_ref_0=nel_mp_ref_0, B_multip=pp.B_multip_dip, enable_kick_x=pp.enable_kick_x, enable_kick_y=pp.enable_kick_y) if pp.enable_arc_quad: ecloud_quad = PyEC4PyHT.Ecloud( slice_by_slice_mode=True, L_ecloud=self.machine.circumference / self.n_kick_smooth * pp.fraction_device_quad, slicer=None, Dt_ref=pp.Dt_ref, pyecl_input_folder=pp.pyecl_input_folder, chamb_type=pp.chamb_type, x_aper=pp.x_aper, y_aper=pp.y_aper, filename_chm=pp.filename_chm, PyPICmode=pp.PyPICmode, Dh_sc=pp.Dh_sc_ext, N_min_Dh_main=pp.N_min_Dh_main, f_telescope=pp.f_telescope, N_nodes_discard=pp.N_nodes_discard, target_grid=target_grid_arcs, N_mp_max=pp.N_mp_max_quad, nel_mp_ref_0=nel_mp_ref_0, B_multip=pp.B_multip_quad, filename_init_MP_state=pp.filename_init_MP_state_quad, enable_kick_x=pp.enable_kick_x, enable_kick_y=pp.enable_kick_y) if self.ring_of_CPUs.I_am_the_master and pp.enable_arc_dip: with open('multigrid_config_dip.txt', 'w') as fid: if hasattr(ecloud_dip.spacech_ele.PyPICobj, 'grids'): fid.write(repr(ecloud_dip.spacech_ele.PyPICobj.grids)) else: fid.write("Single grid.") with open('multigrid_config_dip.pkl', 'w') as fid: if hasattr(ecloud_dip.spacech_ele.PyPICobj, 'grids'): pickle.dump(ecloud_dip.spacech_ele.PyPICobj.grids, fid) else: pickle.dump('Single grid.', fid) if self.ring_of_CPUs.I_am_the_master and pp.enable_arc_quad: with open('multigrid_config_quad.txt', 'w') as fid: if hasattr(ecloud_quad.spacech_ele.PyPICobj, 'grids'): fid.write(repr(ecloud_quad.spacech_ele.PyPICobj.grids)) else: fid.write("Single grid.") with open('multigrid_config_quad.pkl', 'w') as fid: if hasattr(ecloud_quad.spacech_ele.PyPICobj, 'grids'): pickle.dump(ecloud_quad.spacech_ele.PyPICobj.grids, fid) else: pickle.dump('Single grid.', fid) # setup transverse losses (to "protect" the ecloud) import PyHEADTAIL.aperture.aperture as aperture apt_xy = aperture.EllipticalApertureXY( x_aper=pp.target_size_internal_grid_sigma * sigma_x_inj, y_aper=pp.target_size_internal_grid_sigma * sigma_y_inj) self.machine.one_turn_map.append(apt_xy) if pp.enable_transverse_damper: # setup transverse damper from PyHEADTAIL.feedback.transverse_damper import TransverseDamper damper = TransverseDamper(dampingrate_x=pp.dampingrate_x, dampingrate_y=pp.dampingrate_y) self.machine.one_turn_map.append(damper) # We suppose that all the object that cannot be slice parallelized are at the end of the ring i_end_parallel = len( self.machine.one_turn_map) - pp.n_non_parallelizable # split the machine sharing = shs.ShareSegments(i_end_parallel, self.ring_of_CPUs.N_nodes) myid = self.ring_of_CPUs.myid i_start_part, i_end_part = sharing.my_part(myid) self.mypart = self.machine.one_turn_map[i_start_part:i_end_part] if self.ring_of_CPUs.I_am_a_worker: print 'I am id=%d/%d (worker) and my part is %d long' % ( myid, self.ring_of_CPUs.N_nodes, len(self.mypart)) elif self.ring_of_CPUs.I_am_the_master: self.non_parallel_part = self.machine.one_turn_map[i_end_parallel:] print 'I am id=%d/%d (master) and my part is %d long' % ( myid, self.ring_of_CPUs.N_nodes, len(self.mypart)) #install eclouds in my part my_new_part = [] self.my_list_eclouds = [] for ele in self.mypart: my_new_part.append(ele) if ele in self.machine.transverse_map: if pp.optics_pickle_file is None or '_kick_smooth_' in ele.name1: if pp.enable_arc_dip: ecloud_dip_new = ecloud_dip.generate_twin_ecloud_with_shared_space_charge( ) my_new_part.append(ecloud_dip_new) self.my_list_eclouds.append(ecloud_dip_new) if pp.enable_arc_quad: ecloud_quad_new = ecloud_quad.generate_twin_ecloud_with_shared_space_charge( ) my_new_part.append(ecloud_quad_new) self.my_list_eclouds.append(ecloud_quad_new) elif '_kick_element_' in ele.name1 and pp.enable_eclouds_at_kick_elements: i_in_optics = list(optics['name']).index(ele.name1) kick_name = optics['name'][i_in_optics] element_name = kick_name.split('_kick_element_')[-1] L_curr = optics['L_interaction'][i_in_optics] buildup_folder = pp.path_buildup_simulations_kick_elements.replace( '!!!NAME!!!', element_name) chamber_fname = '%s_chamber.mat' % (element_name) B_multip_curr = [0., optics['gradB'][i_in_optics]] x_beam_offset = optics['x'][i_in_optics] * pp.orbit_factor y_beam_offset = optics['y'][i_in_optics] * pp.orbit_factor sigma_x_local = np.sqrt(optics['beta_x'][i_in_optics] * pp.epsn_x / self.machine.betagamma) sigma_y_local = np.sqrt(optics['beta_y'][i_in_optics] * pp.epsn_y / self.machine.betagamma) ecloud_ele = PyEC4PyHT.Ecloud( slice_by_slice_mode=True, L_ecloud=L_curr, slicer=None, Dt_ref=pp.Dt_ref, pyecl_input_folder=pp.pyecl_input_folder, chamb_type='polyg', x_aper=None, y_aper=None, filename_chm=buildup_folder + '/' + chamber_fname, PyPICmode=pp.PyPICmode, Dh_sc=pp.Dh_sc_ext, N_min_Dh_main=pp.N_min_Dh_main, f_telescope=pp.f_telescope, N_nodes_discard=pp.N_nodes_discard, target_grid={ 'x_min_target': -pp.target_size_internal_grid_sigma * sigma_x_local + x_beam_offset, 'x_max_target': pp.target_size_internal_grid_sigma * sigma_x_local + x_beam_offset, 'y_min_target': -pp.target_size_internal_grid_sigma * sigma_y_local + y_beam_offset, 'y_max_target': pp.target_size_internal_grid_sigma * sigma_y_local + y_beam_offset, 'Dh_target': pp.target_Dh_internal_grid_sigma * sigma_y_local }, N_mp_max=pp.N_mp_max_quad, nel_mp_ref_0=nel_mp_ref_0, B_multip=B_multip_curr, filename_init_MP_state=buildup_folder + '/' + pp.name_MP_state_file_kick_elements, x_beam_offset=x_beam_offset, y_beam_offset=y_beam_offset, enable_kick_x=pp.enable_kick_x, enable_kick_y=pp.enable_kick_y) my_new_part.append(ecloud_ele) self.my_list_eclouds.append(ecloud_ele) self.mypart = my_new_part if pp.footprint_mode: print 'Proc. %d computing maps' % myid # generate a bunch bunch_for_map = self.machine.generate_6D_Gaussian_bunch_matched( n_macroparticles=pp.n_macroparticles_for_footprint_map, intensity=pp.intensity, epsn_x=pp.epsn_x, epsn_y=pp.epsn_y, sigma_z=pp.sigma_z) # Slice the bunch slicer_for_map = UniformBinSlicer(n_slices=pp.n_slices, z_cuts=(-pp.z_cut, pp.z_cut)) slices_list_for_map = bunch_for_map.extract_slices(slicer_for_map) #Track the previous part of the machine for ele in self.machine.one_turn_map[:i_start_part]: for ss in slices_list_for_map: ele.track(ss) # Measure optics, track and replace clouds with maps list_ele_type = [] list_meas_beta_x = [] list_meas_alpha_x = [] list_meas_beta_y = [] list_meas_alpha_y = [] for ele in self.mypart: list_ele_type.append(str(type(ele))) # Measure optics bbb = sum(slices_list_for_map) list_meas_beta_x.append(bbb.beta_Twiss_x()) list_meas_alpha_x.append(bbb.alpha_Twiss_x()) list_meas_beta_y.append(bbb.beta_Twiss_y()) list_meas_alpha_y.append(bbb.alpha_Twiss_y()) if ele in self.my_list_eclouds: ele.track_once_and_replace_with_recorded_field_map( slices_list_for_map) else: for ss in slices_list_for_map: ele.track(ss) print 'Proc. %d done with maps' % myid with open('measured_optics_%d.pkl' % myid, 'wb') as fid: pickle.dump( { 'ele_type': list_ele_type, 'beta_x': list_meas_beta_x, 'alpha_x': list_meas_alpha_x, 'beta_y': list_meas_beta_y, 'alpha_y': list_meas_alpha_y, }, fid) #remove RF if self.ring_of_CPUs.I_am_the_master: self.non_parallel_part.remove(self.machine.longitudinal_map) def init_master(self): # Manage multi-job operation if pp.footprint_mode: if pp.N_turns != pp.N_turns_target: raise ValueError( 'In footprint mode you need to set N_turns_target=N_turns_per_run!' ) import Save_Load_Status as SLS SimSt = SLS.SimulationStatus(N_turns_per_run=pp.N_turns, check_for_resubmit=True, N_turns_target=pp.N_turns_target) SimSt.before_simulation() self.SimSt = SimSt # generate a bunch if pp.footprint_mode: self.bunch = self.machine.generate_6D_Gaussian_bunch_matched( n_macroparticles=pp.n_macroparticles_for_footprint_track, intensity=pp.intensity, epsn_x=pp.epsn_x, epsn_y=pp.epsn_y, sigma_z=pp.sigma_z) elif SimSt.first_run: self.bunch = self.machine.generate_6D_Gaussian_bunch_matched( n_macroparticles=pp.n_macroparticles, intensity=pp.intensity, epsn_x=pp.epsn_x, epsn_y=pp.epsn_y, sigma_z=pp.sigma_z) # compute initial displacements inj_opt = self.machine.transverse_map.get_injection_optics() sigma_x = np.sqrt(inj_opt['beta_x'] * pp.epsn_x / self.machine.betagamma) sigma_y = np.sqrt(inj_opt['beta_y'] * pp.epsn_y / self.machine.betagamma) x_kick = pp.x_kick_in_sigmas * sigma_x y_kick = pp.y_kick_in_sigmas * sigma_y # apply initial displacement if not pp.footprint_mode: self.bunch.x += x_kick self.bunch.y += y_kick print 'Bunch initialized.' else: print 'Loading bunch from file...' with h5py.File( 'bunch_status_part%02d.h5' % (SimSt.present_simulation_part - 1), 'r') as fid: self.bunch = self.buffer_to_piece( np.array(fid['bunch']).copy()) print 'Bunch loaded from file.' # initial slicing self.slicer = UniformBinSlicer(n_slices=pp.n_slices, z_cuts=(-pp.z_cut, pp.z_cut)) # define a bunch monitor from PyHEADTAIL.monitors.monitors import BunchMonitor self.bunch_monitor = BunchMonitor( 'bunch_evolution_%02d' % self.SimSt.present_simulation_part, pp.N_turns, {'Comment': 'PyHDTL simulation'}, write_buffer_every=3) # define a slice monitor from PyHEADTAIL.monitors.monitors import SliceMonitor self.slice_monitor = SliceMonitor( 'slice_evolution_%02d' % self.SimSt.present_simulation_part, pp.N_turns, self.slicer, {'Comment': 'PyHDTL simulation'}, write_buffer_every=3) #slice for the first turn slice_obj_list = self.bunch.extract_slices(self.slicer) pieces_to_be_treated = slice_obj_list print 'N_turns', self.N_turns if pp.footprint_mode: self.recorded_particles = ParticleTrajectories( pp.n_macroparticles_for_footprint_track, self.N_turns) return pieces_to_be_treated def init_worker(self): pass def treat_piece(self, piece): for ele in self.mypart: ele.track(piece) def finalize_turn_on_master(self, pieces_treated): # re-merge bunch self.bunch = sum(pieces_treated) #finalize present turn (with non parallel part, e.g. synchrotron motion) for ele in self.non_parallel_part: ele.track(self.bunch) # save results #print '%s Turn %d'%(time.strftime("%d/%m/%Y %H:%M:%S", time.localtime()), i_turn) self.bunch_monitor.dump(self.bunch) self.slice_monitor.dump(self.bunch) # prepare next turn (re-slice) new_pieces_to_be_treated = self.bunch.extract_slices(self.slicer) # order reset of all clouds orders_to_pass = ['reset_clouds'] if pp.footprint_mode: self.recorded_particles.dump(self.bunch) # check if simulation has to be stopped # 1. for beam losses if not pp.footprint_mode and self.bunch.macroparticlenumber < pp.sim_stop_frac * pp.n_macroparticles: orders_to_pass.append('stop') self.SimSt.check_for_resubmit = False print 'Stop simulation due to beam losses.' # 2. for the emittance growth if pp.flag_check_emittance_growth: epsn_x_max = (pp.epsn_x) * (1 + pp.epsn_x_max_growth_fraction) epsn_y_max = (pp.epsn_y) * (1 + pp.epsn_y_max_growth_fraction) if not pp.footprint_mode and (self.bunch.epsn_x() > epsn_x_max or self.bunch.epsn_y() > epsn_y_max): orders_to_pass.append('stop') self.SimSt.check_for_resubmit = False print 'Stop simulation due to emittance growth.' return orders_to_pass, new_pieces_to_be_treated def execute_orders_from_master(self, orders_from_master): if 'reset_clouds' in orders_from_master: for ec in self.my_list_eclouds: ec.finalize_and_reinitialize() def finalize_simulation(self): if pp.footprint_mode: # Tunes import NAFFlib print 'NAFFlib spectral analysis...' qx_i = np.empty_like(self.recorded_particles.x_i[:, 0]) qy_i = np.empty_like(self.recorded_particles.x_i[:, 0]) for ii in range(len(qx_i)): qx_i[ii] = NAFFlib.get_tune(self.recorded_particles.x_i[ii] + 1j * self.recorded_particles.xp_i[ii]) qy_i[ii] = NAFFlib.get_tune(self.recorded_particles.y_i[ii] + 1j * self.recorded_particles.yp_i[ii]) print 'NAFFlib spectral analysis done.' # Save import h5py dict_beam_status = {\ 'x_init': np.squeeze(self.recorded_particles.x_i[:,0]), 'xp_init': np.squeeze(self.recorded_particles.xp_i[:,0]), 'y_init': np.squeeze(self.recorded_particles.y_i[:,0]), 'yp_init': np.squeeze(self.recorded_particles.yp_i[:,0]), 'z_init': np.squeeze(self.recorded_particles.z_i[:,0]), 'qx_i': qx_i, 'qy_i': qy_i, 'x_centroid': np.mean(self.recorded_particles.x_i, axis=1), 'y_centroid': np.mean(self.recorded_particles.y_i, axis=1)} with h5py.File('footprint.h5', 'w') as fid: for kk in dict_beam_status.keys(): fid[kk] = dict_beam_status[kk] else: #save data for multijob operation and launch new job import h5py with h5py.File( 'bunch_status_part%02d.h5' % (self.SimSt.present_simulation_part), 'w') as fid: fid['bunch'] = self.piece_to_buffer(self.bunch) if not self.SimSt.first_run: os.system('rm bunch_status_part%02d.h5' % (self.SimSt.present_simulation_part - 1)) self.SimSt.after_simulation() def piece_to_buffer(self, piece): buf = ch.beam_2_buffer(piece) return buf def buffer_to_piece(self, buf): piece = ch.buffer_2_beam(buf) return piece
def run(): # HELPERS def read_all_data(bfile, sfile, pfile): bunchdata = hp.File(bfile + '.h5') slicedata = hp.File(sfile + '.h5') particledata = hp.File(pfile + '.h5part') # Bunchdata bdata = bunchdata['Bunch'] n_turns = len(bdata['mean_x']) _ = np.empty(n_turns) for key in bdata.keys(): _[:] = bdata[key][:] # Slicedata sdata = slicedata['Slices'] sbdata = slicedata['Bunch'] n_turns = len(sbdata['mean_x']) _ = np.empty(n_turns) for key in sbdata.keys(): _[:] = sbdata[key][:] n_slices, n_turns = sdata['mean_x'].shape _ = np.empty((n_slices, n_turns)) for key in sdata.keys(): _[:,:] = sdata[key][:,:] # Particledata pdata = particledata['Step#0'] n_particles = len(pdata['x']) n_steps = len(particledata.keys()) _ = np.empty(n_particles) for i in xrange(n_steps): step = 'Step#%d' % i for key in particledata[step].keys(): _[:] = particledata[step][key][:] bunchdata.close() slicedata.close() particledata.close() def read_n_plot_data(bfile, sfile, pfile): bunchdata = hp.File(bfile + '.h5') slicedata = hp.File(sfile + '.h5') particledata = hp.File(pfile + '.h5part') fig = plt.figure(figsize=(16, 16)) ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.plot(bunchdata['Bunch']['mean_x'][:]) ax2.plot(slicedata['Slices']['mean_x'][:,:]) ax3.plot(particledata['Step#0']['x'][:]) #ax2.plot(slicedata[]) plt.show() bunchdata.close() slicedata.close() particledata.close() def generate_bunch(n_macroparticles, alpha_x, alpha_y, beta_x, beta_y, alpha_0, Q_s, R): intensity = 1.05e11 sigma_z = 0.059958 gamma = 3730.26 eta = alpha_0 - 1. / gamma**2 gamma_t = 1. / np.sqrt(alpha_0) p0 = np.sqrt(gamma**2 - 1) * m_p * c beta_z = eta * R / Q_s epsn_x = 3.75e-6 # [m rad] epsn_y = 3.75e-6 # [m rad] epsn_z = 4 * np.pi * sigma_z**2 * p0 / (beta_z * e) # WITH OR WITHOUT 4 PIjQuery202047649151738733053_1414145430832? bunch = generators.generate_Gaussian6DTwiss( macroparticlenumber=n_macroparticles, intensity=intensity, charge=e, gamma=gamma, mass=m_p, circumference=C, alpha_x=alpha_x, beta_x=beta_x, epsn_x=epsn_x, alpha_y=alpha_y, beta_y=beta_y, epsn_y=epsn_y, beta_z=beta_z, epsn_z=epsn_z) return bunch # In[4]: # Basic parameters. n_turns = 2 n_segments = 5 n_macroparticles = 500 Q_x = 64.28 Q_y = 59.31 Q_s = 0.0020443 C = 26658.883 R = C / (2.*np.pi) alpha_x_inj = 0. alpha_y_inj = 0. beta_x_inj = 66.0064 beta_y_inj = 71.5376 alpha_0 = 0.0003225 # ##### Things tested: - Instantiation of the three monitors BunchMonitor, SliceMonitor, ParticleMonitor. - dump(beam) method for all the three. - read data from file. Plot example data from Bunch-, Slice- and Particle-Monitors. - SliceMonitor: does it handle/request slice_sets correctly? - Buffers are on for Bunch- and SliceMonitors. Look at one of the files in hdfview to check the units, attributes, ... # In[5]: # Parameters for transverse map. s = np.arange(0, n_segments + 1) * C / n_segments alpha_x = alpha_x_inj * np.ones(n_segments) beta_x = beta_x_inj * np.ones(n_segments) D_x = np.zeros(n_segments) alpha_y = alpha_y_inj * np.ones(n_segments) beta_y = beta_y_inj * np.ones(n_segments) D_y = np.zeros(n_segments) # In[6]: # Instantiate BunchMonitor, SliceMonitor and ParticleMonitor and dump data to file. bunch = generate_bunch( n_macroparticles, alpha_x_inj, alpha_y_inj, beta_x_inj, beta_y_inj, alpha_0, Q_s, R) trans_map = TransverseMap( s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y) # Slicer config for SliceMonitor. unibin_slicer = UniformBinSlicer(n_slices=10, n_sigma_z=None, z_cuts=None) # Monitors bunch_filename = 'bunch_mon' slice_filename = 'slice_mon' particle_filename = 'particle_mon' bunch_monitor = BunchMonitor(filename=bunch_filename, n_steps=n_turns, parameters_dict={'Q_x': Q_x}, write_buffer_every=20) slice_monitor = SliceMonitor( filename=slice_filename, n_steps=n_turns, slicer=unibin_slicer, parameters_dict={'Q_x': Q_x}, write_buffer_every=20) particle_monitor = ParticleMonitor(filename=particle_filename, stride=10, parameters_dict={'Q_x': Q_x}) arrays_dict = {} map_ = trans_map for i in xrange(n_turns): for m_ in map_: m_.track(bunch) bunch_monitor.dump(bunch) slice_monitor.dump(bunch) slice_set_pmon = bunch.get_slices(unibin_slicer) arrays_dict.update({'slidx': slice_set_pmon.slice_index_of_particle, 'zz': bunch.z}) particle_monitor.dump(bunch, arrays_dict) read_all_data(bunch_filename, slice_filename, particle_filename) os.remove(bunch_filename + '.h5') os.remove(slice_filename + '.h5') os.remove(particle_filename + '.h5part')
def run(): # HELPERS def read_all_data(bfile, sfile, pfile): bunchdata = hp.File(bfile + '.h5') slicedata = hp.File(sfile + '.h5') particledata = hp.File(pfile + '.h5part') # Bunchdata bdata = bunchdata['Bunch'] n_turns = len(bdata['mean_x']) _ = np.empty(n_turns) for key in list(bdata.keys()): _[:] = bdata[key][:] # Slicedata sdata = slicedata['Slices'] sbdata = slicedata['Bunch'] n_turns = len(sbdata['mean_x']) _ = np.empty(n_turns) for key in list(sbdata.keys()): _[:] = sbdata[key][:] n_slices, n_turns = sdata['mean_x'].shape _ = np.empty((n_slices, n_turns)) for key in list(sdata.keys()): _[:, :] = sdata[key][:, :] # Particledata pdata = particledata['Step#0'] n_particles = len(pdata['x']) n_steps = len(list(particledata.keys())) _ = np.empty(n_particles) for i in range(n_steps): step = 'Step#%d' % i for key in list(particledata[step].keys()): _[:] = particledata[step][key][:] bunchdata.close() slicedata.close() particledata.close() def read_n_plot_data(bfile, sfile, pfile): bunchdata = hp.File(bfile + '.h5') slicedata = hp.File(sfile + '.h5') particledata = hp.File(pfile + '.h5part') fig = plt.figure(figsize=(16, 16)) ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.plot(bunchdata['Bunch']['mean_x'][:]) ax2.plot(slicedata['Slices']['mean_x'][:, :]) ax3.plot(particledata['Step#0']['x'][:]) #ax2.plot(slicedata[]) plt.show() bunchdata.close() slicedata.close() particledata.close() def generate_bunch(n_macroparticles, alpha_x, alpha_y, beta_x, beta_y, alpha_0, Q_s, R): intensity = 1.05e11 sigma_z = 0.059958 gamma = 3730.26 eta = alpha_0 - 1. / gamma**2 gamma_t = 1. / np.sqrt(alpha_0) p0 = np.sqrt(gamma**2 - 1) * m_p * c beta_z = eta * R / Q_s epsn_x = 3.75e-6 # [m rad] epsn_y = 3.75e-6 # [m rad] epsn_z = 4 * np.pi * sigma_z**2 * p0 / ( beta_z * e ) # WITH OR WITHOUT 4 PIjQuery202047649151738733053_1414145430832? bunch = generators.generate_Gaussian6DTwiss( macroparticlenumber=n_macroparticles, intensity=intensity, charge=e, gamma=gamma, mass=m_p, circumference=C, alpha_x=alpha_x, beta_x=beta_x, epsn_x=epsn_x, alpha_y=alpha_y, beta_y=beta_y, epsn_y=epsn_y, beta_z=beta_z, epsn_z=epsn_z) return bunch # In[4]: # Basic parameters. n_turns = 2 n_segments = 5 n_macroparticles = 500 Q_x = 64.28 Q_y = 59.31 Q_s = 0.0020443 C = 26658.883 R = C / (2. * np.pi) alpha_x_inj = 0. alpha_y_inj = 0. beta_x_inj = 66.0064 beta_y_inj = 71.5376 alpha_0 = 0.0003225 # ##### Things tested: - Instantiation of the three monitors BunchMonitor, SliceMonitor, ParticleMonitor. - dump(beam) method for all the three. - read data from file. Plot example data from Bunch-, Slice- and Particle-Monitors. - SliceMonitor: does it handle/request slice_sets correctly? - Buffers are on for Bunch- and SliceMonitors. Look at one of the files in hdfview to check the units, attributes, ... # In[5]: # Parameters for transverse map. s = np.arange(0, n_segments + 1) * C / n_segments alpha_x = alpha_x_inj * np.ones(n_segments) beta_x = beta_x_inj * np.ones(n_segments) D_x = np.zeros(n_segments) alpha_y = alpha_y_inj * np.ones(n_segments) beta_y = beta_y_inj * np.ones(n_segments) D_y = np.zeros(n_segments) # In[6]: # Instantiate BunchMonitor, SliceMonitor and ParticleMonitor and dump data to file. bunch = generate_bunch(n_macroparticles, alpha_x_inj, alpha_y_inj, beta_x_inj, beta_y_inj, alpha_0, Q_s, R) trans_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y) # Slicer config for SliceMonitor. unibin_slicer = UniformBinSlicer(n_slices=10, n_sigma_z=None, z_cuts=None) # Monitors bunch_filename = 'bunch_mon' slice_filename = 'slice_mon' particle_filename = 'particle_mon' bunch_monitor = BunchMonitor(filename=bunch_filename, n_steps=n_turns, parameters_dict={'Q_x': Q_x}, write_buffer_every=20) slice_monitor = SliceMonitor(filename=slice_filename, n_steps=n_turns, slicer=unibin_slicer, parameters_dict={'Q_x': Q_x}, write_buffer_every=20) particle_monitor = ParticleMonitor(filename=particle_filename, stride=10, parameters_dict={'Q_x': Q_x}) arrays_dict = {} map_ = trans_map for i in range(n_turns): for m_ in map_: m_.track(bunch) bunch_monitor.dump(bunch) slice_monitor.dump(bunch) slice_set_pmon = bunch.get_slices(unibin_slicer) arrays_dict.update({ 'slidx': slice_set_pmon.slice_index_of_particle, 'zz': bunch.z }) particle_monitor.dump(bunch, arrays_dict) read_all_data(bunch_filename, slice_filename, particle_filename) os.remove(bunch_filename + '.h5') os.remove(slice_filename + '.h5') os.remove(particle_filename + '.h5part')
def run(job_id,accQ_y): it = job_id # SIMULATION PARAMETERS # ===================== # Simulation parameters n_turns = 10000 n_macroparticles = 100000 # per bunch # MACHINE PARAMETERS # ================== intensity = 2e13 # protons Ek = 71e6 # Kinetic energy [eV] p0 = np.sqrt((m_p_MeV+Ek)**2 - m_p_MeV**2) * e /c print('Beam kinetic energy: ' + str(Ek*1e-6) + ' MeV') print('Beam momentum: ' + str(p0*1e-6*c/e) + ' MeV/c') accQ_x = 4.31 # Horizontal tune # accQ_y = 3.80 # Vertical tune is an input argument Q_s=0.02 # Longitudinal tune chroma=-1.4 # Chromaticity alpha = 5.034**-2 # momentum compaction circumference = 160. # [meters] # Approximated average beta functions (lumped wake normalizations) beta_x = circumference / (2.*np.pi*accQ_x) beta_y = circumference / (2.*np.pi*accQ_y) # Harmonic number for RF h_RF = 2 h_bunch = h_RF V_RF = 2e5 p_increment = 0. dphi_RF = 0. longitudinal_mode = 'linear' optics_mode = 'smooth' n_segments = 1 s = None alpha_x = None alpha_y = None beta_x = circumference / (2.*np.pi*accQ_x) beta_y = circumference / (2.*np.pi*accQ_y) D_x = 0 D_y = 0 charge = e mass = m_p name = None app_x = 0 app_y = 0 app_xy = 0 # Creates PyHEADTAIL object for the synchotron machine = Synchrotron(optics_mode=optics_mode, circumference=circumference, n_segments=n_segments, s=s, name=name, alpha_x=alpha_x, beta_x=beta_x, D_x=D_x, alpha_y=alpha_y, beta_y=beta_y, D_y=D_y, accQ_x=accQ_x, accQ_y=accQ_y, Qp_x=chroma, Qp_y=chroma, app_x=app_x, app_y=app_y, app_xy=app_xy, alpha_mom_compaction=alpha, longitudinal_mode=longitudinal_mode, h_RF=np.atleast_1d(h_RF), V_RF=np.atleast_1d(V_RF), dphi_RF=np.atleast_1d(dphi_RF), p0=p0, p_increment=p_increment, charge=charge, mass=mass) print() print('machine.beta: ') print(machine.beta) print() epsn_x = 300e-6 epsn_y = 300e-6 sigma_z = 450e-9*c*machine.beta/4. allbunches = machine.generate_6D_Gaussian_bunch(n_macroparticles, intensity, epsn_x, epsn_y, sigma_z) # Slicer object, which used for wakefields and slice monitors slicer = UniformBinSlicer(50, z_cuts=(-4.*sigma_z, 4.*sigma_z)) # WAKE FIELDS # =========== # Length of the wake function in turns, wake n_turns_wake = 150 # Parameters for a resonator # frequency is in the units of (mode-Q_frac), where # mode: integer number of coupled bunch mode (1 matches to the observations) # Q_frac: resonance fractional tune f_r = (1-0.83)*1./(circumference/(c*machine.beta)) Q = 15 R = 1.0e6 # Renator wake object, which is added to the one turn map wakes = CircularResonator(R, f_r, Q, n_turns_wake=n_turns_wake) wake_field = WakeField(slicer, wakes) machine.one_turn_map.append(wake_field) # CREATE MONITORS # =============== simulation_parameters_dict = {'gamma' : machine.gamma,\ 'intensity' : intensity,\ 'Qx' : accQ_x,\ 'Qy' : accQ_y,\ 'Qs' : Q_s,\ 'beta_x' : beta_x,\ 'beta_y' : beta_y,\ # 'beta_z' : bucket.beta_z,\ 'epsn_x' : epsn_x,\ 'epsn_y' : epsn_y,\ 'sigma_z' : sigma_z,\ } # Bunch monitor strores bunch average positions for all the bunches bunchmonitor = BunchMonitor(outputpath + '/bunchmonitor_{:04d}'.format(it), n_turns, simulation_parameters_dict, write_buffer_every=32, buffer_size=32) # Slice monitors saves slice-by-slice data for each bunch slicemonitor = SliceMonitor( outputpath + '/slicemonitor_{:01d}_{:04d}'.format(0,it), 16, slicer, simulation_parameters_dict, write_buffer_every=16, buffer_size=16) # Counter for a number of turns stored to slice monitors s_cnt = 0 # TRACKING LOOP # ============= monitor_active = False print('\n--> Begin tracking...\n') for i in range(n_turns): t0 = time.clock() # Tracks beam through the one turn map simulation map machine.track(allbunches) # Stores bunch mean coordinate values bunchmonitor.dump(allbunches) # If the total oscillation amplitude of bunches exceeds the threshold # or the simulation is running on the last turns, triggers the slice # monitors for headtail motion data if (allbunches.mean_x() > 1e0 or allbunches.mean_y() > 1e0 or i > (n_turns-64)): monitor_active = True # saves slice monitor data if monitors are activated and less than # 64 turns have been stored if monitor_active and s_cnt<64: slicemonitor.dump(allbunches) s_cnt += 1 elif s_cnt == 64: break # If this script is runnin on the first processor, prints the current # bunch coordinates and emittances if (i%100 == 0): print('{:4d} \t {:+3e} \t {:+3e} \t {:+3e} \t {:3e} \t {:3e} \t {:3f} \t {:3f} \t {:3f} \t {:3s}'.format(i, allbunches.mean_x(), allbunches.mean_y(), allbunches.mean_z(), allbunches.epsn_x(), allbunches.epsn_y(), allbunches.epsn_z(), allbunches.sigma_z(), allbunches.sigma_dp(), str(time.clock() - t0)))
def run(intensity, chroma=0, i_oct=0): '''Arguments: - intensity: integer number of charges in beam - chroma: first-order chromaticity Q'_{x,y}, identical for both transverse planes - i_oct: octupole current in A (positive i_oct means LOF = i_oct > 0 and LOD = -i_oct < 0) ''' # BEAM AND MACHINE PARAMETERS # ============================ from LHC import LHC # energy set above will enter get_nonlinear_params p0 assert machine_configuration == 'LHC_6.5TeV_collision_2016' machine = LHC(n_segments=1, machine_configuration=machine_configuration, **get_nonlinear_params(chroma=chroma, i_oct=i_oct)) # BEAM # ==== epsn_x = 3.e-6 # normalised horizontal emittance epsn_y = 3.e-6 # normalised vertical emittance sigma_z = 1.2e-9 * machine.beta * c / 4. # RMS bunch length in meters bunch = machine.generate_6D_Gaussian_bunch_matched(n_macroparticles, intensity, epsn_x, epsn_y, sigma_z=sigma_z) print("\n--> Bunch length and emittance: {:g} m, {:g} eVs.".format( bunch.sigma_z(), bunch.epsn_z())) # CREATE BEAM SLICERS # =================== slicer_for_slicemonitor = UniformBinSlicer(50, z_cuts=(-3 * sigma_z, 3 * sigma_z)) slicer_for_wakefields = UniformBinSlicer(500, z_cuts=(-3 * sigma_z, 3 * sigma_z)) # CREATE WAKES # ============ wake_table1 = WakeTable( wakefile, [ 'time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y', # 'noquadrupole_x', 'noquadrupole_y', 'dipole_xy', 'dipole_yx', # 'nodipole_xy', 'nodipole_yx', ]) wake_field = WakeField(slicer_for_wakefields, wake_table1) # CREATE DAMPER # ============= dampingrate = 50 damper = TransverseDamper(dampingrate, dampingrate) # CREATE MONITORS # =============== try: bucket = machine.longitudinal_map.get_bucket(bunch) except AttributeError: bucket = machine.rfbucket simulation_parameters_dict = { 'gamma': machine.gamma, 'intensity': intensity, 'Qx': machine.Q_x, 'Qy': machine.Q_y, 'Qs': bucket.Q_s, 'beta_x': bunch.beta_Twiss_x(), 'beta_y': bunch.beta_Twiss_y(), 'beta_z': bucket.beta_z, 'epsn_x': bunch.epsn_x(), 'epsn_y': bunch.epsn_y(), 'sigma_z': bunch.sigma_z(), } bunchmonitor = BunchMonitor( outputpath + '/bunchmonitor_{:04d}_chroma={:g}'.format(it, chroma), n_turns, simulation_parameters_dict, write_buffer_every=100) slicemonitor = SliceMonitor( outputpath + '/slicemonitor_{:04d}_chroma={:g}'.format(it, chroma), n_turns_slicemon, slicer_for_slicemonitor, simulation_parameters_dict, write_buffer_every=1, buffer_size=n_turns_slicemon) # TRACKING LOOP # ============= machine.one_turn_map.append(damper) machine.one_turn_map.append(wake_field) # for slice statistics monitoring: s_cnt = 0 monitorswitch = False print('\n--> Begin tracking...\n') # GO!!! for i in range(n_turns): t0 = time.clock() # track the beam around the machine for one turn: machine.track(bunch) ex, ey, ez = bunch.epsn_x(), bunch.epsn_y(), bunch.epsn_z() mx, my, mz = bunch.mean_x(), bunch.mean_y(), bunch.mean_z() # monitor the bunch statistics (once per turn): bunchmonitor.dump(bunch) # if the centroid becomes unstable (>1cm motion) # then monitor the slice statistics: if not monitorswitch: if mx > 1e-2 or my > 1e-2 or i > n_turns - n_turns_slicemon: print("--> Activate slice monitor") monitorswitch = True else: if s_cnt < n_turns_slicemon: slicemonitor.dump(bunch) s_cnt += 1 # stop the tracking as soon as we have not-a-number values: if not all(np.isfinite(c) for c in [ex, ey, ez, mx, my, mz]): print('*** STOPPING SIMULATION: non-finite bunch stats!') break # print status all 1000 turns: if i % 1000 == 0: t1 = time.clock() print('Emittances: ({:.3g}, {:.3g}, {:.3g}) ' '& Centroids: ({:.3g}, {:.3g}, {:.3g})' '@ turn {:d}, {:g} ms, {:s}'.format( ex, ey, ez, mx, my, mz, i, (t1 - t0) * 1e3, time.strftime("%d/%m/%Y %H:%M:%S", time.localtime()))) print('\n*** Successfully completed!')