def __init__(self, arg, attribute='C', values=[0.1, 1, 10, 100, 1000]): """ :Parameters: - `arg` - another Param object, or the classifier to be used - `attribute` - the attribute of the classifier that needs tuning - `values` - a list of values to try """ if arg.__class__ == self.__class__: other = arg self.attribute = other.attribute self.values = other.values[:] self.classifiers = [ classifier.__class__(classifier) for classifier in other.classifiers ] for i in range(len(self)): misc.mysetattr(self.classifiers[i], self.attribute, self.values[i]) elif hasattr(arg, 'type') and arg.type == 'classifier': self.attribute = attribute self.values = values self.classifiers = [ arg.__class__(arg) for i in range(len(self.values)) ] for i in range(len(self)): misc.mysetattr(self.classifiers[i], self.attribute, self.values[i]) elif type(arg) == type([]): self.classifiers = [ arg[i].__class__(arg[i]) for i in range(len(arg)) ]
def __init__(self, arg, attribute = 'C', values = [0.1, 1, 10, 100, 1000]) : """ :Parameters: - `arg` - another Param object, or the classifier to be used - `attribute` - the attribute of the classifier that needs tuning - `values` - a list of values to try """ if arg.__class__ == self.__class__ : other = arg self.attribute = other.attribute self.values = other.values[:] self.classifiers = [classifier.__class__(classifier) for classifier in other.classifiers] for i in range(len(self)) : misc.mysetattr(self.classifiers[i], self.attribute, self.values[i]) elif hasattr(arg, 'type') and arg.type == 'classifier' : self.attribute = attribute self.values = values self.classifiers = [arg.__class__(arg) for i in range(len(self.values))] for i in range(len(self)) : misc.mysetattr(self.classifiers[i], self.attribute, self.values[i]) elif type(arg) == type([]) : self.classifiers = [arg[i].__class__(arg[i]) for i in range(len(arg))]
def __init__(self, arg, attribute1='C', values1=[0.1, 1, 10, 100, 1000], attribute2='kernel.gamma', values2=[0.001, 0.01, 0.1, 1, 10]): """ :Parameters: - `arg` - another Param object, or the classifier to be used - `attribute1` - the first attribute of the classifier that needs tuning - `values1` - a list of values to try for attribute1 - `attribute2` - the second attribute - `values2` - a list of values to try for attribute2 """ if arg.__class__ == self.__class__: other = arg self.attribute1 = other.attribute1 self.values1 = other.values1[:] self.attribute2 = other.attribute2 self.values2 = other.values2[:] self.classifiers = [ classifier.__class__(classifier) for classifier in other.classifiers ] elif hasattr(arg, 'type') and arg.type == 'classifier': self.attribute1 = attribute1 self.values1 = values1 self.attribute2 = attribute2 self.values2 = values2 self.classifiers = [ arg.__class__(arg) for i in range(len(values1) * len(values2)) ] for i in range(len(self.values1)): for j in range(len(self.values2)): classifierID = i * len(self.values2) + j misc.mysetattr(self.classifiers[classifierID], self.attribute1, self.values1[i]) misc.mysetattr(self.classifiers[classifierID], self.attribute2, self.values2[j])
def __init__(self, arg, attribute1 = 'C', values1 = [0.1, 1, 10, 100, 1000], attribute2 = 'kernel.gamma', values2 = [0.001, 0.01, 0.1, 1, 10]) : """ :Parameters: - `arg` - another Param object, or the classifier to be used - `attribute1` - the first attribute of the classifier that needs tuning - `values1` - a list of values to try for attribute1 - `attribute2` - the second attribute - `values2` - a list of values to try for attribute2 """ if arg.__class__ == self.__class__ : other = arg self.attribute1 = other.attribute1 self.values1 = other.values1[:] self.attribute2 = other.attribute2 self.values2 = other.values2[:] self.classifiers = [classifier.__class__(classifier) for classifier in other.classifiers] elif hasattr(arg, 'type') and arg.type == 'classifier' : self.attribute1 = attribute1 self.values1 = values1 self.attribute2 = attribute2 self.values2 = values2 self.classifiers = [arg.__class__(arg) for i in range(len(values1) * len(values2))] for i in range(len(self.values1)) : for j in range(len(self.values2)) : classifierID = i * len(self.values2) + j misc.mysetattr(self.classifiers[classifierID], self.attribute1, self.values1[i]) misc.mysetattr(self.classifiers[classifierID], self.attribute2, self.values2[j])