예제 #1
0
def test():

    sim = Simulation() 

    # Geometry and Model Equations
    sim.geomy       = 'periodic'
    sim.stepper     = Step.AB3      
    sim.method      = 'Spectral'     
    sim.dynamics    = 'Linear'     
    sim.flux_method = Flux.spectral_sw 

    # Specify paramters
    sim.Ly  = 4000e3   
    sim.Ny  = 256       
    sim.f0  = 0.
    sim.Hs  = [100.]      
    sim.rho = [1025.]      
    sim.end_time = sim.Ly/(np.sqrt(sim.Hs[0]*sim.g))

    # Plotting parameters
    sim.animate = 'None'
    sim.output = False
    sim.diagnose = False 

    # Initialize the grid and zero solutions
    sim.initialize()

    for ii in range(sim.Nz): 
        sim.soln.h[:,:,ii] = sim.Hs[ii]

    # Gaussian initial conditions
    x0 = 1.*sim.Lx/2.     
    W  = 200.e3          
    amp = 1.            
    sim.soln.h[:,:,0] += amp*np.exp(-(sim.Y)**2/(W**2))
    IC = sim.soln.h[:,:,0].copy()

    sim.run()       

    # Compare final state to initial conditions
    # error_h is normalized using the triangle inequality
    error_h = np.linalg.norm(IC - sim.soln.h[:,:,0])/(np.linalg.norm(IC) + np.linalg.norm(sim.soln.h[:,:,0]))
    error_v = np.linalg.norm(sim.soln.v[:,:,0])
    assert (error_h < 1e-6) and (error_v < 5e-5)
예제 #2
0
def test():

    sim = Simulation()  # Create a simulation object

    # Geometry and Model Equations
    sim.geomx = 'walls'
    sim.geomy = 'walls'
    sim.stepper = Step.AB3
    sim.method = 'Spectral'
    sim.dynamics = 'Nonlinear'
    sim.flux_method = Flux.spectral_sw

    # Specify paramters
    sim.Lx = 4000e3
    sim.Ly = 4000e3
    sim.Nx = 128
    sim.Ny = 128
    sim.Nz = 1
    sim.g = 9.81
    sim.f0 = 1.e-4
    sim.beta = 0e-11
    sim.cfl = 0.1
    sim.Hs = [100.]
    sim.rho = [1025.]
    sim.end_time = 5. * minute

    sim.animate = 'None'
    sim.output = False
    sim.diagnose = False

    # Initialize the grid and zero solutions
    sim.initialize()

    for ii in range(sim.Nz):  # Set mean depths
        sim.soln.h[:, :, ii] = sim.Hs[ii]

    # Gaussian initial conditions
    W = 200.e3  # Width
    amp = 1.  # Amplitude
    sim.soln.h[:, :, 0] += amp * np.exp(-(sim.X / W)**2 - (sim.Y / W)**2)

    # Run the simulation
    sim.run()
예제 #3
0
def test():

    sim = Simulation()  # Create a simulation object

    # Geometry and Model Equations
    sim.geomx       = 'periodic'
    sim.geomy       = 'periodic'
    sim.stepper     = Step.AB3      
    sim.method      = 'Spectral'    
    sim.dynamics    = 'Nonlinear'  
    sim.flux_method = Flux.spectral_sw 

    # Specify paramters
    sim.Lx  = 4000e3  
    sim.Ly  = 4000e3   
    sim.Nx  = 128       
    sim.Ny  = 128      
    sim.Nz  = 1         
    sim.g   = 9.81       
    sim.f0  = 1.e-4       
    sim.beta = 0e-11       
    sim.cfl = 0.1           
    sim.Hs  = [100.]         
    sim.rho = [1025.]         
    sim.end_time = 5.*minute 

    sim.animate = 'None'    
    sim.output = False       
    sim.diagnose = False

    # Initialize the grid and zero solutions
    sim.initialize()

    for ii in range(sim.Nz):  # Set mean depths
        sim.soln.h[:,:,ii] = sim.Hs[ii]

    # Gaussian initial conditions
    W  = 200.e3                # Width
    amp = 1.                  # Amplitude
    sim.soln.h[:,:,0] += amp*np.exp(-(sim.X/W)**2 - (sim.Y/W)**2)

    # Run the simulation
    sim.run() 
예제 #4
0
def test():

    sim = Simulation()

    # Geometry and Model Equations
    sim.geomy = 'periodic'
    sim.stepper = Step.AB2
    sim.method = 'Spectral'
    sim.dynamics = 'Nonlinear'
    sim.flux_method = Flux.spectral_sw

    # Specify paramters
    sim.Ly = 4000e3
    sim.Ny = 128
    sim.cfl = 0.5
    sim.Hs = [100.]
    sim.rho = [1025.]
    sim.end_time = 5. * minute

    # Plotting parameters
    sim.animate = 'None'
    sim.output = False
    sim.diagnose = False

    # Initialize the grid and zero solutions
    sim.initialize()

    for ii in range(sim.Nz):
        sim.soln.h[:, :, ii] = sim.Hs[ii]

    # Gaussian initial conditions
    x0 = 1. * sim.Lx / 2.
    W = 200.e3
    amp = 1.
    sim.soln.h[:, :, 0] += amp * np.exp(-(sim.Y)**2 / (W**2))

    sim.run()
예제 #5
0
파일: test_Euler.py 프로젝트: PyRsw/PyRsw
def test():

    sim = Simulation() 

    # Geometry and Model Equations
    sim.geomy       = 'periodic'  
    sim.stepper     = Step.Euler   
    sim.method      = 'Spectral'     
    sim.dynamics    = 'Nonlinear'     
    sim.flux_method = Flux.spectral_sw 

    # Specify paramters
    sim.Ly  = 4000e3   
    sim.Ny  = 128       
    sim.cfl = 0.5        
    sim.Hs  = [100.]      
    sim.rho = [1025.]      
    sim.end_time = 5.*minute

    # Plotting parameters
    sim.animate = 'None'  
    sim.output = False   
    sim.diagnose = False 

    # Initialize the grid and zero solutions
    sim.initialize()

    for ii in range(sim.Nz): 
        sim.soln.h[:,:,ii] = sim.Hs[ii]

    # Gaussian initial conditions
    x0 = 1.*sim.Lx/2.     
    W  = 200.e3          
    amp = 1.            
    sim.soln.h[:,:,0] += amp*np.exp(-(sim.Y)**2/(W**2))

    sim.run()      
예제 #6
0
sim.Ny  = 128             # Grid points in y
sim.Nz  = 1               # Number of layers
sim.g   = 9.81            # Gravity                     (m/sec^2)
sim.f0  = 1.e-4           # Coriolis                    (1/sec)
sim.beta = 0e-11          # Coriolis beta parameter     (1/m/sec)
sim.cfl = 0.1             # CFL coefficient             (m)
sim.Hs  = [100.]          # Vector of mean layer depths (m)
sim.rho = [1025.]         # Vector of layer densities   (kg/m^3)
sim.end_time = 2.*24.*hour   # End Time                    (sec)

# Parallel? Only applies to the FFTWs
sim.num_threads = 4

# Plotting parameters
sim.plott   = 15.*minute  # Period of plots
sim.animate = 'Anim'      # 'Save' to create video frames,
                          # 'Anim' to animate,
                          # 'None' otherwise
sim.plot_vars = ['h']
#sim.plot_vars = ['vort','div']
#sim.clims = [[-0.015, 0.015],[-0.001, 0.001]]
                         
# Output parameters
sim.output = False        # True or False
sim.savet  = 1.*hour      # Time between saves

# Diagnostics parameters
sim.diagt    = 2.*minute  # Time for output
sim.diagnose = False      # True or False

# Initialize the grid and zero solutions
예제 #7
0
sim.Nx = 128  # Grid points in x
sim.Ny = 128  # Grid points in y
sim.Nz = 1  # Number of layers
sim.g = 9.81  # Gravity                     (m/sec^2)
sim.f0 = 1.e-4  # Coriolis                    (1/sec)
sim.beta = 0e-10  # Coriolis beta               (1/m/sec)
sim.Hs = [500.]  # Vector of mean layer depths (m)
sim.rho = [1025.]  # Vector of layer densities   (kg/m^3)
sim.end_time = 20 * 24. * hour  # End Time                    (sec)

# Parallel? Only applies to the FFTWs
sim.num_threads = 32

# Plotting parameters
sim.plott = 12. * hour  # Period of plots
sim.animate = 'Save'  # 'Save' to create video frames,
# 'Anim' to animate,
# 'None' otherwise
sim.plot_vars = ['vort', 'v', 'u', 'h']
sim.clims = [[-0.8, 0.8], [-0.5, 0.5], [], []]

# Output parameters
sim.output = True  # True or False
sim.savet = 10. * day  # Time between saves

# Diagnostics parameters
sim.diagt = 2. * minute  # Time for output
sim.diagnose = False  # True or False

# Initialize the grid and zero solutions
sim.initialize()
예제 #8
0
sim.Ny = 512  # Grid points in y
sim.Nz = 1  # Number of layers
sim.g = 9.81  # Gravity                     (m/sec^2)
sim.f0 = 1.0e-4  # Coriolis                    (1/sec)
sim.beta = 0e-10  # Coriolis beta parameter     (1/m/sec)
sim.cfl = 0.15  # CFL coefficient             (m)
sim.Hs = [100.0]  # Vector of mean layer depths (m)
sim.rho = [1025.0]  # Vector of layer densities   (kg/m^3)
sim.end_time = 6.0 * 24.0 * hour  # End Time                    (sec)

# Parallel? Only applies to the FFTWs
sim.num_threads = 4

# Plotting parameters
sim.plott = 20.0 * minute  # Period of plots
sim.animate = "Anim"  # 'Save' to create video frames,
# 'Anim' to animate,
# 'None' otherwise

sim.plot_vars = ["vort", "div", "h"]  # Specify which variables to plot
# sim.plot_vars = ['u','v','h']   # Specify which variables to plot
# Specify manual ylimits if desired
# An empty list uses default limits
sim.ylims = [[-0.01, 0.01], [-2.0, 2.0], [-1.0, 1.0]]
# sim.ylims=[[-0.3,0.3],[-0.2,0.2],[-1.0,1.0]]

# Output parameters
sim.output = False  # True or False
sim.savet = 1.0 * hour  # Time between saves

# Diagnostics parameters
예제 #9
0
# Specify paramters
sim.Lx = 200e3  # Domain extent               (m)
sim.Ly = 200e3  # Domain extent               (m)
# sim.Nx  = 128             # Grid points in x
sim.Ny = 128  # Grid points in y
sim.Nz = 1  # Number of layers
sim.g = 9.81  # Gravity                     (m/sec^2)
sim.f0 = 1.0e-4  # Coriolis                    (1/sec)
sim.beta = 0e-10  # Coriolis beta               (1/m/sec)
sim.cfl = 0.2  # CFL coefficient             (m)
sim.Hs = [100.0]  # Vector of mean layer depths (m)
sim.rho = [1025.0]  # Vector of layer densities   (kg/m^3)
sim.end_time = 14 * 24.0 * hour  # End Time                    (sec)

# Initialize the grid and zero solutions
sim.animate = "None"
sim.diagnose = False
sim.output = False
sim.initialize()


# Define Differentiation Matrix and grid
Dy, y = cheb(sim.Ny)
y = (y[:, 0] + 1) * sim.Ly / 2
Dy = Dy * (2 / sim.Ly)

# Define Basic State: Bickley Jet
Ljet = 20e3  # Jet width
Umax = 0.5  # Maximum speed
amp = Umax * sim.f0 * Ljet / sim.g  # Elevation of free-surface in basic state
sim.UB = sim.g * amp / (sim.f0 * Ljet) / (np.cosh((y - sim.Ly / 2.0) / Ljet) ** 2)
예제 #10
0
# Specify paramters
sim.Lx = 200e3  # Domain extent               (m)
sim.Ly = 200e3  # Domain extent               (m)
#sim.Nx  = 128             # Grid points in x
sim.Ny = 128  # Grid points in y
sim.Nz = 1  # Number of layers
sim.g = 9.81  # Gravity                     (m/sec^2)
sim.f0 = 1.e-4  # Coriolis                    (1/sec)
sim.beta = 0e-10  # Coriolis beta               (1/m/sec)
sim.cfl = 0.2  # CFL coefficient             (m)
sim.Hs = [100.]  # Vector of mean layer depths (m)
sim.rho = [1025.]  # Vector of layer densities   (kg/m^3)
sim.end_time = 14 * 24. * hour  # End Time                    (sec)

# Initialize the grid and zero solutions
sim.animate = 'None'
sim.diagnose = False
sim.output = False
sim.initialize()

# Define Differentiation Matrix and grid
Dy, y = cheb(sim.Ny)
y = (y[:, 0] + 1) * sim.Ly / 2
Dy = Dy * (2 / sim.Ly)

# Define Basic State: Bickley Jet
Ljet = 20e3  # Jet width
Umax = 0.5  # Maximum speed
amp = Umax * sim.f0 * Ljet / sim.g  # Elevation of free-surface in basic state
sim.UB = sim.g * amp / (sim.f0 * Ljet) / (np.cosh((y - sim.Ly / 2.) / Ljet)**2)
sim.HB = sim.Hs[0] - amp * np.tanh((y - sim.Ly / 2.) / Ljet)