def adjoint_modeling(model, src_coords, rec_coords, rec_data, space_order=8, free_surface=False, dt=None):
    clear_cache()

    # If wavelet is file, read it
    if isinstance(rec_data, str):
        rec_data = np.load(rec_data)

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create the adjoint wavefield
    if src_coords is not None:
        v = TimeFunction(name="v", grid=model.grid, time_order=2, space_order=space_order)
    else:
        v = TimeFunction(name="v", grid=model.grid, time_order=2, space_order=space_order, save=nt)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)

    # Input data is wavefield
    full_q = 0
    if isinstance(rec_data, TimeFunction):
        wf_rec = TimeFunction(name='wf_rec', grid=model.grid, time_order=2, space_order=space_order, save=nt)
        wf_rec._data = rec_data._data
        full_q = wf_rec

    stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * (vlaplace + full_q))
    expression = [Eq(v.backward, stencil)]

    # Free surface
    if free_surface is True:
        expression += freesurface(v, space_order//2, model.nbpml, forward=False)

    # Adjoint source is injected at receiver locations
    if rec_coords is not None:
        rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
        rec.data[:] = rec_data[:]
        adj_src = rec.inject(field=v.backward, expr=rec * rho * dt**2 / m)
        expression += adj_src

    # Data is sampled at source locations
    if src_coords is not None:
        src = PointSource(name='src', grid=model.grid, ntime=nt, coordinates=src_coords)
        adj_rec = src.interpolate(expr=v)
        expression += adj_rec

    # Create operator and run

    subs = model.spacing_map
    subs[v.grid.time_dim.spacing] = dt
    op = Operator(expression, subs=subs, dse='advanced', dle='advanced')
    cf = op.cfunction
    summary = op.apply()
    if src_coords is None:
        return v, summary
    else:
        return src.data, summary
예제 #2
0
def adjoint_modeling(model,
                     src_coords,
                     rec_coords,
                     rec_data,
                     space_order=8,
                     nb=40,
                     dt=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, damp = model.m, model.damp

    # Create the adjoint wavefield
    v = TimeFunction(name="v",
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)

    # Set up PDE and rearrange
    eqn = m * v.dt2 - v.laplace - damp * v.dt
    stencil = solve(eqn, v.backward)[0]
    expression = [Eq(v.backward, stencil)]

    # Adjoint source is injected at receiver locations
    rec = Receiver(name='rec',
                   grid=model.grid,
                   ntime=nt,
                   coordinates=rec_coords)
    rec.data[:] = rec_data[:]
    adj_src = rec.inject(field=v.backward,
                         offset=model.nbpml,
                         expr=rec * dt**2 / m)

    # Data is sampled at source locations
    src = PointSource(name='src',
                      grid=model.grid,
                      ntime=nt,
                      coordinates=src_coords)
    adj_rec = src.interpolate(expr=v, offset=model.nbpml)

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + adj_rec
    op = Operator(expression,
                  subs=model.spacing_map,
                  dse='advanced',
                  dle='advanced',
                  name="Backward%s" % randint(1e5))
    op(dt=dt)

    return src.data
예제 #3
0
def adjoint_freq_born(model,
                      rec_coords,
                      rec_data,
                      freq,
                      ufr,
                      ufi,
                      space_order=8,
                      nb=40,
                      dt=None,
                      isic=False,
                      factor=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, damp = model.m, model.damp
    nfreq = ufr.shape[0]
    time = model.grid.time_dim
    if factor is None:
        factor = int(1 / (dt * 4 * np.max(freq)))
        tsave = ConditionalDimension(name='tsave',
                                     parent=model.grid.time_dim,
                                     factor=factor)
    if factor == 1:
        tsave = time
    else:
        tsave = ConditionalDimension(name='tsave',
                                     parent=model.grid.time_dim,
                                     factor=factor)
    dtf = factor * dt
    ntf = factor / nt
    print("DFT subsampling factor: ", factor)

    # Create the forward and adjoint wavefield
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    f = Function(name='f', dimensions=(ufr.indices[0], ), shape=(nfreq, ))
    f.data[:] = freq[:]
    gradient = Function(name="gradient", grid=model.grid)

    # Set up PDE and rearrange
    eqn = m * v.dt2 - v.laplace - damp * v.dt
    stencil = solve(eqn, v.backward, simplify=False, rational=False)[0]
    expression = [Eq(v.backward, stencil)]

    # Data at receiver locations as adjoint source
    rec = Receiver(name='rec',
                   grid=model.grid,
                   ntime=nt,
                   coordinates=rec_coords)
    rec.data[:] = rec_data[:]
    adj_src = rec.inject(field=v.backward,
                         offset=model.nbpml,
                         expr=rec * dt**2 / m)

    # Gradient update
    if isic is True:
        if len(model.shape) == 2:
            gradient_update = [
                Eq(
                    gradient, gradient + (2 * np.pi * f)**2 * ntf *
                    (ufr * cos(2 * np.pi * f * tsave * dtf) -
                     ufi * sin(2 * np.pi * f * tsave * dtf)) * v * model.m -
                    (ufr.dx * cos(2 * np.pi * f * tsave * dtf) -
                     ufi.dx * sin(2 * np.pi * f * tsave * dtf)) * v.dx * ntf -
                    (ufr.dy * cos(2 * np.pi * f * tsave * dtf) -
                     ufi.dy * sin(2 * np.pi * f * tsave * dtf)) * v.dy * ntf)
            ]
        else:
            gradient_update = [
                Eq(
                    gradient, gradient + (2 * np.pi * f)**2 * ntf *
                    (ufr * cos(2 * np.pi * f * tsave * dtf) -
                     ufi * sin(2 * np.pi * f * tsave * dtf)) * v * model.m -
                    (ufr.dx * cos(2 * np.pi * f * tsave * dtf) -
                     ufi.dx * sin(2 * np.pi * f * tsave * dtf)) * v.dx * ntf -
                    (ufr.dy * cos(2 * np.pi * f * tsave * dtf) -
                     ufi.dy * sin(2 * np.pi * f * tsave * dtf)) * v.dy * ntf -
                    (ufr.dz * cos(2 * np.pi * f * tsave * dtf) -
                     ufi.dz * sin(2 * np.pi * f * tsave * dtf)) * v.dz * ntf)
            ]
    else:
        gradient_update = [
            Eq(
                gradient, gradient + (2 * np.pi * f)**2 / nt *
                (ufr * cos(2 * np.pi * f * tsave * dtf) -
                 ufi * sin(2 * np.pi * f * tsave * dtf)) * v)
        ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[v.grid.time_dim.spacing] = dt
    op = Operator(expression,
                  subs=subs,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))
    op()
    clear_cache()
    return gradient.data
예제 #4
0
def adjoint_born(model,
                 rec_coords,
                 rec_data,
                 u=None,
                 op_forward=None,
                 is_residual=False,
                 space_order=8,
                 nb=40,
                 isic=False,
                 dt=None,
                 n_checkpoints=None,
                 maxmem=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)
    H = symbols('H')
    eqn = m / rho * v.dt2 - H - damp * v.dt
    stencil = solve(eqn, v.backward, simplify=False, rational=False)[0]
    expression = [Eq(v.backward, stencil.subs({H: vlaplace}))]

    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g',
                     grid=model.grid,
                     ntime=nt,
                     coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward,
                           offset=model.nbpml,
                           expr=rec_g * rho * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u',
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order)
    if isic is not True:
        gradient_update = [Eq(gradient, gradient - dt * u.dt2 / rho * v)]
    else:
        # sum u.dx * v.dx fo x in dimensions.
        # space_order//2
        diff_u_v = sum([
            first_derivative(u, dim=d, order=space_order // 2) *
            first_derivative(v, dim=d, order=space_order // 2)
            for d in u.space_dimensions
        ])
        gradient_update = [
            Eq(gradient, gradient - dt * (u * v.dt2 * m + diff_u_v) / rho)
        ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[u.grid.time_dim.spacing] = dt
    op = Operator(expression,
                  subs=subs,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))

    # Optimal checkpointing
    if op_forward is not None:
        rec = Receiver(name='rec',
                       grid=model.grid,
                       ntime=nt,
                       coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        if maxmem is not None:
            n_checkpoints = int(
                np.floor(maxmem * 10**6 / (cp.size * u.data.itemsize)))
        wrap_fw = CheckpointOperator(op_forward, u=u, m=model.m, rec=rec)
        wrap_rev = CheckpointOperator(op, u=u, v=v, m=model.m, rec_g=rec_g)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt - 2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]  # input is observed data
            fval = .5 * np.dot(rec_g.data[:].flatten(),
                               rec_g.data[:].flatten()) * dt
        wrp.apply_reverse()
    else:
        op()
    clear_cache()

    if op_forward is not None and is_residual is not True:
        return fval, gradient.data
    else:
        return gradient.data
예제 #5
0
def adjoint_modeling(model,
                     src_coords,
                     rec_coords,
                     rec_data,
                     space_order=8,
                     nb=40,
                     free_surface=False,
                     dt=None):
    clear_cache()

    # If wavelet is file, read it
    if isinstance(rec_data, str):
        rec_data = np.load(rec_data)

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create the adjoint wavefield
    if src_coords is not None:
        v = TimeFunction(name="v",
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order)
    else:
        v = TimeFunction(name="v",
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order,
                         save=nt)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)
    H = symbols('H')
    eqn = m / rho * v.dt2 - H - damp * v.dt

    # Input data is wavefield
    if isinstance(rec_data, TimeFunction):
        wf_rec = TimeFunction(name='wf_rec',
                              grid=model.grid,
                              time_order=2,
                              space_order=space_order,
                              save=nt)
        wf_rec._data = rec_data._data
        eqn -= wf_rec

    stencil = solve(eqn, v.backward, simplify=False, rational=False)[0]
    expression = [Eq(v.backward, stencil.subs({H: vlaplace}))]

    # Free surface
    if free_surface is True:
        fs = DefaultDimension(name="fs", default_value=int(space_order / 2))
        expression += [
            Eq(v.forward.subs({v.indices[-1]: model.nbpml - fs - 1}),
               -v.forward.subs({v.indices[-1]: model.nbpml + fs + 1}))
        ]

    # Adjoint source is injected at receiver locations
    if rec_coords is not None:
        rec = Receiver(name='rec',
                       grid=model.grid,
                       ntime=nt,
                       coordinates=rec_coords)
        rec.data[:] = rec_data[:]
        adj_src = rec.inject(field=v.backward,
                             offset=model.nbpml,
                             expr=rec * rho * dt**2 / m)
        expression += adj_src

    # Data is sampled at source locations
    if src_coords is not None:
        src = PointSource(name='src',
                          grid=model.grid,
                          ntime=nt,
                          coordinates=src_coords)
        adj_rec = src.interpolate(expr=v, offset=model.nbpml)
        expression += adj_rec

    # Create operator and run
    set_log_level('ERROR')
    subs = model.spacing_map
    subs[v.grid.time_dim.spacing] = dt
    op = Operator(expression,
                  subs=subs,
                  dse='advanced',
                  dle='advanced',
                  name="Backward%s" % randint(1e5))
    op()
    if src_coords is None:
        return v
    else:
        return src.data
예제 #6
0
def adjoint_freq_born(model,
                      rec_coords,
                      rec_data,
                      freq,
                      ufr,
                      ufi,
                      space_order=8,
                      nb=40,
                      dt=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, damp = model.m, model.damp
    nfreq = ufr.shape[0]
    time = model.grid.time_dim

    # Create the forward and adjoint wavefield
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    f = Function(name='f', dimensions=(ufr.indices[0], ), shape=(nfreq, ))
    f.data[:] = freq[:]
    gradient = Function(name="gradient", grid=model.grid)

    # Set up PDE and rearrange
    eqn = m * v.dt2 - v.laplace - damp * v.dt
    stencil = solve(eqn, v.backward)[0]
    expression = [Eq(v.backward, stencil)]

    # Data at receiver locations as adjoint source
    rec = Receiver(name='rec',
                   grid=model.grid,
                   ntime=nt,
                   coordinates=rec_coords)
    rec.data[:] = rec_data[:]
    adj_src = rec.inject(field=v.backward,
                         offset=model.nbpml,
                         expr=rec * dt**2 / m)

    # Gradient update
    gradient_update = [
        Eq(
            gradient, gradient + (2 * np.pi * f)**2 / nt *
            (ufr * cos(2 * np.pi * f * time * dt) -
             ufi * sin(2 * np.pi * f * time * dt)) * v)
    ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    op = Operator(expression,
                  subs=model.spacing_map,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))
    op(dt=dt)
    clear_cache()

    return gradient.data
예제 #7
0
def adjoint_born(model,
                 rec_coords,
                 rec_data,
                 u=None,
                 op_forward=None,
                 is_residual=False,
                 space_order=8,
                 nb=40,
                 isic=False,
                 dt=None):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, damp = model.m, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v',
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    eqn = m * v.dt2 - v.laplace - damp * v.dt
    stencil = solve(eqn, v.backward)[0]
    expression = [Eq(v.backward, stencil)]

    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g',
                     grid=model.grid,
                     ntime=nt,
                     coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward,
                           offset=model.nbpml,
                           expr=rec_g * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u',
                         grid=model.grid,
                         time_order=2,
                         space_order=space_order)

    if isic is not True:
        gradient_update = [Eq(gradient, gradient - u * v.dt2)
                           ]  # zero-lag cross-correlation imaging condition
    else:
        # linearized inverse scattering imaging condition (Op't Root et al. 2010; Whitmore and Crawley 2012)
        if len(model.shape) == 2:
            gradient_update = [
                Eq(gradient,
                   gradient - (u * v.dt2 * m + u.dx * v.dx + u.dy * v.dy))
            ]
        else:
            gradient_update = [
                Eq(
                    gradient, gradient -
                    (u * v.dt2 * m + u.dx * v.dx + u.dy * v.dy + u.dz * v.dz))
            ]

    # Create operator and run
    set_log_level('ERROR')
    expression += adj_src + gradient_update
    op = Operator(expression,
                  subs=model.spacing_map,
                  dse='advanced',
                  dle='advanced',
                  name="Gradient%s" % randint(1e5))

    # Optimal checkpointing
    if op_forward is not None:
        rec = Receiver(name='rec',
                       grid=model.grid,
                       ntime=nt,
                       coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        n_checkpoints = None
        wrap_fw = CheckpointOperator(op_forward,
                                     u=u,
                                     m=model.m.data,
                                     rec=rec,
                                     dt=dt)
        wrap_rev = CheckpointOperator(op,
                                      u=u,
                                      v=v,
                                      m=model.m.data,
                                      rec_g=rec_g,
                                      dt=dt)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt - 2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]  # input is observed data
            fval = .5 * np.linalg.norm(rec_g.data[:])**2
        wrp.apply_reverse()
    else:
        op(dt=dt)
    clear_cache()

    if op_forward is not None and is_residual is not True:
        return fval, gradient.data
    else:
        return gradient.data
def adjoint_freq_born(model, rec_coords, rec_data, freq, ufr, ufi, space_order=8, dt=None, isic=False, factor=None,
                      free_surface=False):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp
    nfreq = ufr.shape[0]
    time = model.grid.time_dim
    if factor is None:
        factor = int(1 / (dt*4*np.max(freq)))
        tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor)
    if factor==1:
        tsave = time
    else:
        tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor)
    dtf = factor * dt
    ntf = factor / nt
    print("DFT subsampling factor: ", factor)

    # Create the forward and adjoint wavefield
    v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order)
    f = Function(name='f', dimensions=(ufr.indices[0],), shape=(nfreq,))
    f.data[:] = freq[:]
    gradient = Function(name="gradient", grid=model.grid)
    vlaplace, rho = acoustic_laplacian(v, rho)

    # Set up PDE and rearrange
    stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace)
    expression = [Eq(v.backward, stencil)]

    # Data at receiver locations as adjoint source
    rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
    rec.data[:] = rec_data[:]
    adj_src = rec.inject(field=v.backward, expr=rec * dt**2 / m)

    # Gradient update
    if isic is True:
        if len(model.shape) == 2:
            gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2*ntf*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v*model.m -
                                                       (ufr.dx*cos(2*np.pi*f*tsave*dtf) - ufi.dx*sin(2*np.pi*f*tsave*dtf))*v.dx*ntf -
                                                       (ufr.dy*cos(2*np.pi*f*tsave*dtf) - ufi.dy*sin(2*np.pi*f*tsave*dtf))*v.dy*ntf)]
        else:
            gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2*ntf*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v*model.m -
                                                       (ufr.dx*cos(2*np.pi*f*tsave*dtf) - ufi.dx*sin(2*np.pi*f*tsave*dtf))*v.dx*ntf -
                                                       (ufr.dy*cos(2*np.pi*f*tsave*dtf) - ufi.dy*sin(2*np.pi*f*tsave*dtf))*v.dy*ntf -
                                                       (ufr.dz*cos(2*np.pi*f*tsave*dtf) - ufi.dz*sin(2*np.pi*f*tsave*dtf))*v.dz*ntf)]
    else:
        gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2/nt*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v)]

    # Create operator and run

    # Free surface
    if free_surface is True:
        expression += freesurface(v, space_order//2, model.nbpml, forward=False)
    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[v.grid.time_dim.spacing] = dt
    op = Operator(expression, subs=subs, dse='advanced', dle='advanced')
    cf = op.cfunction
    op()
    clear_cache()
    return gradient.data
def adjoint_born(model, rec_coords, rec_data, u=None, op_forward=None, is_residual=False,
                 space_order=8, isic=False, dt=None, n_checkpoints=None, maxmem=None,
                 free_surface=False, tsub_factor=1, checkpointing=False):
    clear_cache()

    # Parameters
    nt = rec_data.shape[0]
    if dt is None:
        dt = model.critical_dt
    m, rho, damp = model.m, model.rho, model.damp

    # Create adjoint wavefield and gradient
    v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order)
    gradient = Function(name='gradient', grid=model.grid)

    # Set up PDE and rearrange
    vlaplace, rho = acoustic_laplacian(v, rho)
    stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace)
    expression = [Eq(v.backward, stencil)]
    # Data at receiver locations as adjoint source
    rec_g = Receiver(name='rec_g', grid=model.grid, ntime=nt, coordinates=rec_coords)
    if op_forward is None:
        rec_g.data[:] = rec_data[:]
    adj_src = rec_g.inject(field=v.backward, expr=rec_g * rho * dt**2 / m)

    # Gradient update
    if u is None:
        u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order)
    if isic is not True:
        gradient_update = [Inc(gradient, - dt * u.dt2 / rho * v)]
    else:
        # sum u.dx * v.dx fo x in dimensions.
        # space_order//2
        diff_u_v = sum([first_derivative(u, dim=d, fd_order=space_order//2)*
                        first_derivative(v, dim=d, fd_order=space_order//2)
                        for d in u.space_dimensions])
        gradient_update = [Inc(gradient, - tsub_factor * dt * (u * v.dt2 * m + diff_u_v) / rho)]

    # Create operator and run

    # Free surface
    if free_surface is True:
        expression += freesurface(v, space_order//2, model.nbpml, forward=False)

    expression += adj_src + gradient_update
    subs = model.spacing_map
    subs[u.grid.time_dim.spacing] = dt
    op = Operator(expression, subs=subs, dse='advanced', dle='advanced')

    # Optimal checkpointing
    summary1 = None
    summary2 = None
    if op_forward is not None and checkpointing is True:
        rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
        cp = DevitoCheckpoint([u])
        if maxmem is not None:
            n_checkpoints = int(np.floor(maxmem * 10**6 / (cp.size * u.data.itemsize)))
        wrap_fw = CheckpointOperator(op_forward, u=u, m=model.m, rec=rec)
        wrap_rev = CheckpointOperator(op, u=u, v=v, m=model.m, rec_g=rec_g)

        # Run forward
        wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt-2)
        wrp.apply_forward()

        # Residual and gradient
        if is_residual is True:  # input data is already the residual
            rec_g.data[:] = rec_data[:]
        else:
            rec_g.data[:] = rec.data[:] - rec_data[:]   # input is observed data
            fval = .5*np.dot(rec_g.data[:].flatten(), rec_g.data[:].flatten()) * dt
        wrp.apply_reverse()

    elif op_forward is not None and checkpointing is False:

        # Compile first
        cf1 = op_forward.cfunction
        cf2 = op.cfunction

        # Run forward and adjoint
        summary1 = op_forward.apply()
        if is_residual is True:
            rec_g.data[:] = rec_data[:]
        else:
            rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords)
            rec_g.data[:] = rec.data[:] - rec_data[:]
            fval = .5*np.dot(rec_g.data[:].flatten(), rec_g.data[:].flatten()) * dt
        summary2 = op.apply()
    else:
        cf = op.cfunction
        summary1 = op.apply()
    clear_cache()

    if op_forward is not None and is_residual is not True:
        if summary2 is not None:
            return fval, gradient.data, summary1, summary2
        elif summary1 is not None:
            return fval, gradient.data, summary1
        else:
            return fval, gradient.data
    else:
        if summary2 is not None:
            return gradient.data, summary1, summary2
        elif summary1 is not None:
            return gradient.data, summary1
        else:
            return gradient.data
def adjoint_y(model,
              y,
              src_coords,
              rcv_coords,
              weight_fun_pars=None,
              dt=None,
              space_order=8,
              save=False):
    "Compute adjoint wavefield v = adjoint(F(m))*y and related quantities (||v||_w, v(xsrc))"

    clear_cache()

    # Setting time sampling
    if dt is None:
        dt = model.critical_dt

    # Physical parameters
    m, rho, damp = model.m, model.rho, model.damp

    # Setting adjoint wavefield
    nt = y.shape[0]
    v = TimeFunction(name="v",
                     grid=model.grid,
                     time_order=2,
                     space_order=space_order,
                     save=None if not save else nt)

    # Set up PDE expression and rearrange
    vlaplace, rho = laplacian(v, rho)
    stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace)
    expression = [Eq(v.backward, stencil)]

    # Setup adjoint source injected at receiver locations
    rcv = Receiver(name="rcv",
                   grid=model.grid,
                   ntime=nt,
                   coordinates=rcv_coords)
    rcv.data[:] = y[:]
    adj_src = rcv.inject(field=v.backward, expr=rcv * rho * dt**2 / m)
    expression += adj_src

    # Setup adjoint wavefield sampling at source locations
    src = PointSource(name="src",
                      grid=model.grid,
                      ntime=nt,
                      coordinates=src_coords)
    adj_rcv = src.interpolate(expr=v)
    expression += adj_rcv

    # Setup ||v||_w computation
    norm_vy2_t = Function(name="nvy2t", grid=model.grid)
    expression += [Inc(norm_vy2_t, Pow(v, 2))]
    i = Dimension(name="i", )
    norm_vy2 = Function(name="nvy2",
                        shape=(1, ),
                        dimensions=(i, ),
                        grid=model.grid)
    if weight_fun_pars is None:
        expression += [Inc(norm_vy2[0], norm_vy2_t)]
    else:
        weight = weight_fun(weight_fun_pars, model, src_coords)
        expression += [Inc(norm_vy2[0], norm_vy2_t / weight**2)]

    # Create operator and run
    subs = model.spacing_map
    subs[v.grid.time_dim.spacing] = dt
    op = Operator(expression,
                  subs=subs,
                  dse="advanced",
                  dle="advanced",
                  name="adjoint_y")
    op()

    # Output
    if save:
        return norm_vy2.data[0], src.data, v
    else:
        return norm_vy2.data[0], src.data, None