def test_multiple_retrieval_vector(self): """ Test a TQTreeFormulaObservable can be created/retrieved via TQObservable and retrieved again with exactly the same expression. """ o1 = TQObservable.getObservable("VecBranch(tau_pt)", self.tags) self.assertTrue(o1) self.assertTrue(o1.initialize(self.sample)) o2 = TQObservable.getObservable("VecBranch(tau_pt)", self.tags) self.assertTrue(o2) self.assertTrue(o2.initialize(self.sample)) self.assertEqual(o1, o2) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertEqual(o1.getNevaluations(), 2) self.assertAlmostEqual(o1.getValueAt(0), 1.42) self.assertAlmostEqual(o1.getValueAt(1), 2.72) self.assertEqual(o2.getNevaluations(), 2) self.assertAlmostEqual(o2.getValueAt(0), 1.42) self.assertAlmostEqual(o2.getValueAt(1), 2.72)
def test_multiple_retrieval_scalar_tags(self): """ Test a TQTreeFormulaObservable can be created/retrieved via TQObservable and retrieved again with exactly the same expression when tags are involved. """ o1 = TQObservable.getObservable("$(a)", self.tags) self.assertTrue(o1) self.assertTrue(o1.initialize(self.sample)) o2 = TQObservable.getObservable("$(a)", self.tags) self.assertTrue(o2) self.assertTrue(o2.initialize(self.sample)) o3 = TQObservable.getObservable("n_taus", self.tags) self.assertTrue(o3) self.assertTrue(o3.initialize(self.sample)) self.assertEqual(o1, o2) self.assertEqual(o1, o3) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertEqual(o2.getNevaluations(), 1) self.assertAlmostEqual(o2.getValue(), 3.14) self.assertEqual(o1.getNevaluations(), 1) self.assertAlmostEqual(o1.getValue(), 3.14) self.assertEqual(o2.getNevaluations(), 1) self.assertAlmostEqual(o2.getValue(), 3.14)
def test_basic_retrieval(self): """ Test a TQTreeFormulaObservable can be created/retrieved via TQObservable. """ # scalar obs = TQObservable.getObservable("n_taus", self.tags) self.assertTrue(obs) # vector obs = TQObservable.getObservable("VecBranch(tau_pt)", self.tags) self.assertTrue(obs)
def test_multiple_retrieval_different_spaces(self): """ Test a TQFilterObservable can be created/retrieved via TQObservable and retrieved again with different number of spaces. """ o1 = TQObservable.getObservable("Filter($(a), [$(b)] > 3.)", self.tags) self.assertTrue(o1) o2 = TQObservable.getObservable("Filter($(a),[$(b)]> 3.)", self.tags) self.assertTrue(o2) self.assertEqual(o1, o2)
def test_multiple_retrieval(self): """ Test a TQFilterObservable can be created/retrieved via TQObservable and retrieved again with exactly the same expression. """ o1 = TQObservable.getObservable("Filter($(a), $(b) > 3.)", self.tags) self.assertTrue(o1) o2 = TQObservable.getObservable("Filter($(a), $(b) > 3.)", self.tags) self.assertTrue(o2) self.assertEqual(o1, o2)
def test_multiple_retrieval_with_bools(self): """ Test a TQFilterObservable can be created/retrieved via TQObservable and retrieved again with exactly the same expression when a boolean tag is used in the cut expression. """ o1 = TQObservable.getObservable("Filter($(a), $(b) > 3. && $(c))", self.tags) self.assertTrue(o1) o2 = TQObservable.getObservable("Filter($(a), $(b) > 3. && $(c))", self.tags) self.assertTrue(o2) self.assertEqual(o1, o2)
def test_multiple_retrieval_with_bools_and_different_spaces(self): """ Test a TQFilterObservable can be created/retrieved via TQObservable and retrieved again with different usage of white spaces when a boolean tag is used in the cut expression. """ o1 = TQObservable.getObservable("Filter($(a), $(b) > 3. && $(c))", self.tags) self.assertTrue(o1) o2 = TQObservable.getObservable("Filter($(a),$(b)> 3. && $(c))", self.tags) self.assertTrue(o2) self.assertEqual(o1, o2)
def test_observable_expr_scalar(self): """ Test that the observable created from an expression with a scalar branch returns the same expression again. """ obs = TQObservable.getObservable("n_taus", self.tags) self.assertEqual(obs.getExpression(), "n_taus")
def test_observable_expr_vector(self): """ Test that the observable created from an expression with a vector branch returns the same expression again. """ obs = TQObservable.getObservable("VecBranch(tau_pt)", self.tags) self.assertEqual(obs.getExpression(), "VecBranch(tau_pt)")
def test_observable_type_vector(self): """ Test that the observable created from an expression with a vector branch is a vector observable. """ obs = TQObservable.getObservable("VecBranch(tau_pt)", self.tags) self.assertIsInstance(obs, TQTreeFormulaObservable) self.assertEqual(obs.getObservableType(), TQObservable.vector)
def test_observable_type_scalar(self): """ Test that the observable created from an expression with a scalar branch is a scalar observable. """ obs = TQObservable.getObservable("n_taus", self.tags) self.assertIsInstance(obs, TQTreeFormulaObservable) self.assertEqual(obs.getObservableType(), TQObservable.scalar)
def test_cut(self): """ Test that the observable does not return any value, when the second argument is false. """ obs = TQObservable.getObservable("Filter($(a), $(b) > 4.)", self.tags) self.assertTrue(obs.initialize(self.sample)) self.assertEqual(obs.getNevaluations(), 0)
def test_return_value(self): """ Test that the first argument is returned when the second argument is true. """ obs = TQObservable.getObservable("Filter($(a), $(b) > 3.)", self.tags) self.assertTrue(obs.initialize(self.sample)) self.assertEqual(obs.getNevaluations(), 1) self.assertEqual(obs.getValueAt(0), 2.2)
def test_return_value_vector_at(self): """ Test the VecAT observable works with VecBranch. """ obs = TQObservable.getObservable("VecAT(VecBranch(tau_pt), 1)", self.tags) self.assertTrue(obs.initialize(self.sample)) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertAlmostEqual(obs.getValue(), 2.72)
def test_return_value_vector_at_by_10_outside(self): """ Test the VecAT observable works with VecBranch, when VecAt is divided by 10. """ obs = TQObservable.getObservable("[VecAT(VecBranch(tau_pt), 1)] / 10", self.tags) self.assertTrue(obs.initialize(self.sample)) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertAlmostEqual(obs.getValue(), 0.272)
def test_return_value_scalar_tags(self): """ Test that the observable created from a scalar branch using tags returns the correct value. """ obs = TQObservable.getObservable("$(a)", self.tags) self.assertTrue(obs.initialize(self.sample)) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertEqual(obs.getNevaluations(), 1) self.assertAlmostEqual(obs.getValue(), 3.14)
def test_return_value_vector_tags(self): """ Test that the observable created from a vector branch using tags returns the correct value. """ obs = TQObservable.getObservable("VecBranch($(b))", self.tags) self.assertTrue(obs.initialize(self.sample)) tree = self.sample.getTreeToken().getContentAsTObject() tree.GetEntry(0) self.assertEqual(obs.getNevaluations(), 2) self.assertAlmostEqual(obs.getValueAt(0), 1.42) self.assertAlmostEqual(obs.getValueAt(1), 2.72)
def test_basic_retrieval(self): """ Test a TQFilterObservable can be created/retrieved via TQObservable. """ obs = TQObservable.getObservable("Filter($(a), $(b) > 3.)", self.tags) self.assertTrue(obs)
def main(samples, sample_to_run, extra_args): index = int(extra_args[0]) sample_to_run_prefix = pathToUniqStr(sample_to_run) isparallel = (sample_to_run != "") # # # Define cuts # # if index == -1: cuts = getWWWAnalysisCuts() if index == 0: cuts = getWWWAnalysisCuts() if index == 1: cuts = getWWWAnalysisCuts(jecvar_suffix="_up") if index == 2: cuts = getWWWAnalysisCuts(jecvar_suffix="_dn") if index == 3: cuts = getWWWAnalysisCuts(genmet_prefix="gen", genmet_suffix="_gen") # # # Define histograms # # histojob_filename = ".histo.{}.cfg".format(sample_to_run_prefix) f = open(histojob_filename, "w") f.write(""" TH1F('MllSS' , '' , 180 , 0. , 300.) << (MllSS : '\#it{m}_{ll} [GeV]'); #@*/*: MllSS; TH1F('DPhill' , '' , 180 , 0. , 3.1416) << (TMath::Abs(TVector2::Phi_mpi_pi(lep_phi[0] - lep_phi[1])) : '\#Delta\#phi_{ll}'); #@*/*: DPhill; TH1F('MllSS_wide' , '' , 180 , 0. , 2000.) << (MllSS : '\#it{m}_{ll} [GeV]'); #@*/*: MllSS_wide; TH1F('MllZ' , '' , 180 , 60. , 120.) << (MllSS : '\#it{m}_{ll} [GeV]'); #@*/*: MllZ; TH1F('MllZZoom' , '' , 180 , 80. , 100.) << (MllSS : '\#it{m}_{ll} [GeV]'); #@*/*: MllZZoom; TH1F('M3l' , '' , 180 , 0. , 150.) << (M3l : '\#it{m}_{lll} [GeV]'); #@*/*: M3l; TH1F('Pt3lGCR' , '' , 180 , 0. , 100.) << (Pt3l : '\#it{p}_{T,lll} [GeV]'); #@*/*: Pt3lGCR; TH1F('Pt3l' , '' , 180 , 0. , 300.) << (Pt3l : '\#it{p}_{T,lll} [GeV]'); #@*/*: Pt3l; TH1F('Ptll' , '' , 180 , 0. , 300.) << (Pt3l : '\#it{p}_{T,lll} [GeV]'); #@*/*: Ptll; TH1F('nvtx' , '' , 60 , 0. , 60. ) << (nVert : 'Nvtx'); #@*/*: nvtx; TH1F('Mjj' , '' , 180 , 0. , 300.) << (Mjj : '\#it{m}_{jj} [GeV]'); #@*/*: Mjj; TH1F('MjjL' , '' , 180 , 0. , 750.) << (MjjL : '\#it{m}_{jj,central,leading} [GeV]'); #@*/*: MjjL; TH1F('DetajjL' , '' , 180 , 0. , 5.) << (DetajjL : '\#it{m}_{jj,central,leading} [GeV]'); #@*/*: DetajjL; TH1F('MjjVBF' , '' , 180 , 0. , 750.) << (MjjVBF : '\#it{m}_{jj,central,leading} [GeV]'); #@*/*: MjjVBF; TH1F('DetajjVBF' , '' , 180 , 0. , 8.) << (DetajjVBF : '\#it{m}_{jj,central,leading} [GeV]'); #@*/*: DetajjVBF; TH1F('MET' , '' , 180 , 0. , 180.) << (met_pt : 'MET [GeV]'); #@*/*: MET; TH2F('lep0_pt_vs_eta' , '' , {0, 0.9, 1.6, 1.9, 2.4}, {20, 30, 40, 50, 60, 70, 150, 2000} ) << (lep_eta[0] : '\#eta_{lead-lep}', lep_pt[0] : '\#it{p}_{T, lead-lep} [GeV]'); #@*/*: lep0_pt_vs_eta; TH2F('lep1_pt_vs_eta' , '' , {0, 0.9, 1.6, 1.9, 2.4}, {20, 30, 40, 50, 60, 70, 150, 2000} ) << (lep_eta[1] : '\#eta_{trail-lep}', lep_pt[1] : '\#it{p}_{T, trail-lep} [GeV]'); #@*/*: lep1_pt_vs_eta; TH1F('lep_pt0' , '' , 180 , 0. , 250 ) << (lep_pt[0] : '\#it{p}_{T, lead-lep} [GeV]'); #@*/*: lep_pt0; TH1F('lep_pt1' , '' , 180 , 0. , 150 ) << (lep_pt[1] : '\#it{p}_{T, trail-lep} [GeV]'); #@*/*: lep_pt1; TH1F('lep_pt2' , '' , 180 , 0. , 150 ) << (lep_pt[2] : '\#it{p}_{T, subtrail-lep} [GeV]'); #@*/*: lep_pt1; TH1F('lep_eta0' , '' , 180 , -2.5 , 2.5 ) << (lep_eta[0] : '\#eta_{lead-lep}'); #@*/*: lep_eta0; TH1F('lep_eta1' , '' , 180 , -2.5 , 2.5 ) << (lep_eta[1] : '\#eta_{trail-lep}'); #@*/*: lep_eta1; TH1F('lep_phi0' , '' , 180 , -3.1416 , 3.1416 ) << (lep_phi[0] : '\#phi_{lead-lep}'); #@*/*: lep_phi0; TH1F('lep_phi1' , '' , 180 , -3.1416, 3.1416 ) << (lep_phi[1] : '\#phi_{trail-lep}'); #@*/*: lep_phi1; TH1F('lep_relIso03EAv2Lep0' , '' , 180 , 0.0 , 0.2 ) << (lep_relIso03EAv2Lep[0] : 'I_{R=0.3,EA,Lep, lead-lep}'); #@*/*: lep_relIso03EAv2Lep0; TH1F('lep_relIso03EAv2Lep1' , '' , 180 , 0.0 , 0.2 ) << (lep_relIso03EAv2Lep[1] : 'I_{R=0.3,EA,Lep, trail-lep}'); #@*/*: lep_relIso03EAv2Lep1; TH1F('lep_relIso03EAv2Lep2' , '' , 180 , 0.0 , 0.2 ) << (lep_relIso03EAv2Lep[2] : 'I_{R=0.3,EA,Lep, trail-lep}'); #@*/*: lep_relIso03EAv2Lep2; #TH1F('nj' , '' , 7 , 0. , 7. ) << (nj : 'N_{jet}'); #@*/*: nj; #TH1F('nj30' , '' , 7 , 0. , 7. ) << (nj30 : 'N_{jet}'); #@*/*: nj30; #TH1F('nb' , '' , 5 , 0. , 5. ) << (nb : 'N_{b-jet}'); #@*/*: nb; TH1F('jets_pt0' , '' , 180 , 0. , 250 ) << (jets_p4[0].pt() : '\#it{p}_{T, lead-jet} [GeV]'); #@*/*: jets_pt0; TH1F('jets_pt1' , '' , 180 , 0. , 150 ) << (jets_p4[1].pt() : '\#it{p}_{T, trail-jet} [GeV]'); #@*/*: jets_pt1; TH1F('jets_eta0' , '' , 180 , -5.0 , 5.0 ) << (jets_p4[0].eta() : '\#eta_{lead-jet}'); #@*/*: jets_eta0; TH1F('jets_eta1' , '' , 180 , -5.0 , 5.0 ) << (jets_p4[1].eta() : '\#eta_{trail-jet}'); #@*/*: jets_eta1; TH1F('jets_phi0' , '' , 180 , -3.1416, 3.1416 ) << (jets_p4[0].phi() : '\#phi_{lead-jet}'); #@*/*: jets_phi0; TH1F('jets_phi1' , '' , 180 , -3.1416, 3.1416 ) << (jets_p4[1].phi() : '\#phi_{trail-jet}'); #@*/*: jets_phi1; TH1F('MTmax3L' , '' , 180 , 0. , 300.) << ([MTMax3L] : '\#it{m}_{T,max} [GeV]'); #@*/*: MTmax3L; TH1F('MT3rd' , '' , 180 , 0. , 300.) << (MT3rd : '\#it{m}_{T,3rd} [GeV]'); #@*/*: MT3rd; TH1F('Mlvlvjj' , '' , 180 , 0. , 1000.) << ([MTlvlvjj] : '\#it{m}_{lvlvjj} [GeV]'); #@*/*: Mlvlvjj; TH1F('Mlvlvjj_wide' , '' , 180 , 0. , 3000.) << ([MTlvlvjj] : '\#it{m}_{lvlvjj} [GeV]'); #@*/*: Mlvlvjj_wide; TH1F('MTlvlv' , '' , 180 , 0. , 1000.) << ([MTlvlv] : '\#it{m}_{T,lvlv} [GeV]'); #@*/*: MTlvlv; @BTCRSSeeFull: lep_pt0, lep_pt1, MET; @BTCRSSemFull: lep_pt0, lep_pt1, MET; @BTCRSSmmFull: lep_pt0, lep_pt1, MET; @BTCRSideSSeeFull: lep_pt0, lep_pt1, MET; @BTCRSideSSemFull: lep_pt0, lep_pt1, MET; @BTCRSideSSmmFull: lep_pt0, lep_pt1, MET; @LMETCRSSeeFull: lep_pt0, lep_pt1, MET, Mjj; @LMETCRSSemFull: lep_pt0, lep_pt1, MET, Mjj; @LMETCRSSmmFull: lep_pt0, lep_pt1, MET, Mjj; @SRSSeeFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SRSSemFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SRSSmmFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SideSSeeFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SideSSemFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SideSSmmFull/*: MllSS_wide, MTlvlv, Mjj, Mlvlvjj_wide, lep_pt0, lep_pt1, lep_pt2, DPhill; @SR0SFOSFull/* :MllSS_wide, MTlvlv, lep_pt0, lep_pt1, lep_pt2; @SR1SFOSFull/* :MllSS_wide, MTlvlv, lep_pt0, lep_pt1, lep_pt2; @SR2SFOSFull/* :MllSS_wide, MTlvlv, lep_pt0, lep_pt1, lep_pt2; """) f.close() # # # Book Analysis Jobs (Histogramming, Cutflow, Event lists, etc.) # # histojob = TQHistoMakerAnalysisJob() histojob.importJobsFromTextFiles(histojob_filename, cuts, "*", True if not isparallel else False) # Analysis jobs cutflowjob = TQCutflowAnalysisJob("cutflow") cuts.addAnalysisJob(cutflowjob, "*") # Eventlist jobs (use this if we want to print out some event information in a text format e.g. run, lumi, evt or other variables.) eventlistjob = TQEventlistAnalysisJob("eventlist") eventlist_filename = ".eventlist.{}.cfg".format(sample_to_run_prefix) f = open(eventlist_filename, "w") f.write(""" lepton: run << run, lumi << lumi, evt << evt; @SRSSeeFull: lepton; @SRSSemFull: lepton; @SRSSmmFull: lepton; @SideSSeeFull: lepton; @SideSSemFull: lepton; @SideSSmmFull: lepton; @SR0SFOSFull: lepton; @SR1SFOSFull: lepton; @SR2SFOSFull: lepton; @WZCRSSeeFull: lepton; @WZCRSSemFull: lepton; @WZCRSSmmFull: lepton; @WZCR1SFOSFull: lepton; @WZCR2SFOSFull: lepton; """) f.close() eventlistjob.importJobsFromTextFiles(eventlist_filename, cuts, "*", True if not isparallel else False) # # # Add custom tqobservable that can do more than just string based draw statements # # from QFramework import TQObservable, TQWWWMTMax3L, TQWWWClosureEvtType, TQWWWVariables customobservables = {} customobservables["MTMax3L"] = TQWWWMTMax3L("") customobservables["MTMax3L_up"] = TQWWWMTMax3L("_up") customobservables["MTMax3L_dn"] = TQWWWMTMax3L("_dn") customobservables["MTlvlvjj"] = TQWWWVariables("MTlvlvjj") customobservables["MTlvlv"] = TQWWWVariables("MTlvlv") TQObservable.addObservable(customobservables["MTMax3L"], "MTMax3L") TQObservable.addObservable(customobservables["MTMax3L_up"], "MTMax3L_up") TQObservable.addObservable(customobservables["MTMax3L_dn"], "MTMax3L_dn") TQObservable.addObservable(customobservables["MTlvlvjj"], "MTlvlvjj") TQObservable.addObservable(customobservables["MTlvlv"], "MTlvlv") # Print cuts and numebr of booked analysis jobs for debugging purpose if not isparallel: cuts.printCut("trd") # # # Set object "generalization" (i.e. merging histograms) # # #samples.getSampleFolder("/typebkg/prompt/Other").setTagBool(".asv.generalize.counter", True) #samples.getSampleFolder("/typebkg/prompt/Other").setTagBool(".asv.generalize.histograms", True) #samples.getSampleFolder("/typebkg/lostlep/Other").setTagBool(".asv.generalize.counter", True) #samples.getSampleFolder("/typebkg/lostlep/Other").setTagBool(".asv.generalize.histograms", True) #samples.getSampleFolder("/typebkg/qflip/Other").setTagBool(".asv.generalize.counter", True) #samples.getSampleFolder("/typebkg/qflip/Other").setTagBool(".asv.generalize.histograms", True) #samples.getSampleFolder("/typebkg/photon/Other").setTagBool(".asv.generalize.counter", True) #samples.getSampleFolder("/typebkg/photon/Other").setTagBool(".asv.generalize.histograms", True) #samples.getSampleFolder("/typebkg/fakes/Other").setTagBool(".asv.generalize.counter", True) #samples.getSampleFolder("/typebkg/fakes/Other").setTagBool(".asv.generalize.histograms", True) # # # Loop over the samples # # # setup a visitor to actually loop over ROOT files vis = TQAnalysisSampleVisitor(cuts, True) # Run the job! if sample_to_run: samples.visitSampleFolders(vis, "{}".format(sample_to_run)) else: samples.visitSampleFolders(vis) # Write the output histograms and cutflow cut values and etc. prefix = "output" if sample_to_run: prefix = ".output_{}".format(sample_to_run_prefix) if index == 0: samples.writeToFile("{}_normal.root".format(prefix), True) if index == 1: samples.writeToFile("{}_jec_up.root".format(prefix), True) if index == 2: samples.writeToFile("{}_jec_dn.root".format(prefix), True) if index == 3: samples.writeToFile("{}_gen_met.root".format(prefix), True) os.system("rm {}".format(eventlist_filename)) os.system("rm {}".format(histojob_filename))
def main(index, mode, donotrun): # Determine JEC mode jecvar = "" if mode == 1: jecvar = "_up" if mode == 2: jecvar = "_dn" # # # Create the master TQSampleFolder # # samples = TQSampleFolder("samples") # # # Connect input baby ntuple # # connectNtuples(samples, samplescfgpath, nfspath, ">4", ">5") # # # Define cuts # # PreselCuts = [ ["1", "{$(usefakeweight)?1.:evt_scale1fb*35.9}"], ["1", "{$(usefakeweight)?1.:purewgt}"], ["Flag_AllEventFilters", "1"], ["nj30>=1", "1"], ["firstgoodvertex==0", "1"], ["evt_passgoodrunlist", "1"], ["mc_HLT_SingleIsoMu17+mc_HLT_SingleIsoEl17", "1"], ] PreselCutExpr, PreselWgtExpr = combexpr(PreselCuts) # Complicated string construction for looes and tight ID muon mu_loosetemp = "(TMath::Abs(lep_eta[{idx}]<2.4))*(abs(lep_dz[{idx}])<0.1)*(abs(lep_dxy[{idx}])<0.05)*(abs(lep_ip3d[{idx}])<0.015)*(abs(lep_ip3derr[{idx}]/lep_ip3d[{idx}])<4.)*(abs(lep_pterr[{idx}]/lep_trk_pt[{idx}])<0.2)*(lep_isMediumPOG[{idx}])*(lep_relIso03EAv2Lep[{idx}]<0.4)*(lep_pt[{idx}]>20.)" mu_tighttemp = "({loose})*(lep_relIso03EAv2Lep[{idx}]<0.03)".format( loose=mu_loosetemp, idx="{idx}") leadmu_loose = mu_loosetemp.format(idx="0") leadmu_tight = mu_tighttemp.format(idx="0") trailmu_loose = mu_loosetemp.format(idx="1") trailmu_tight = mu_tighttemp.format(idx="1") bothmu_loose = "({})&&({})".format(leadmu_loose, trailmu_loose) bothmu_tight = "({})&&({})".format(leadmu_tight, trailmu_tight) # Complicated string construction for looes and tight ID muon mu3l_loosetemp = "(TMath::Abs(lep_eta[{idx}]<2.4))*(abs(lep_dz[{idx}])<0.1)*(abs(lep_dxy[{idx}])<0.05)*(abs(lep_ip3d[{idx}])<0.015)*(abs(lep_ip3derr[{idx}]/lep_ip3d[{idx}])<4.)*(abs(lep_pterr[{idx}]/lep_trk_pt[{idx}])<0.2)*(lep_isMediumPOG[{idx}])*(lep_relIso03EAv2Lep[{idx}]<0.4)*(lep_pt[{idx}]>20.)" mu3l_tighttemp = "({loose})*(lep_relIso03EAv2Lep[{idx}]<0.07)".format( loose=mu3l_loosetemp, idx="{idx}") leadmu3l_loose = mu3l_loosetemp.format(idx="0") leadmu3l_tight = mu3l_tighttemp.format(idx="0") trailmu3l_loose = mu3l_loosetemp.format(idx="1") trailmu3l_tight = mu3l_tighttemp.format(idx="1") bothmu3l_loose = "({})&&({})".format(leadmu3l_loose, trailmu3l_loose) bothmu3l_tight = "({})&&({})".format(leadmu3l_tight, trailmu3l_tight) # Complicated string construction for looes and tight ID electron el_loosetemp = "(TMath::Abs(lep_eta[{idx}]<2.4))*(abs(lep_dz[{idx}])<0.1)*(abs(lep_dxy[{idx}])<0.05)*(abs(lep_ip3d[{idx}])<0.01)*(lep_tightCharge[{idx}]==2)*((abs(lep_etaSC[{idx}])<=1.479)*(lep_MVA[{idx}]>0.941)+(abs(lep_etaSC[{idx}])>1.479)*(lep_MVA[{idx}]>0.925))*(lep_isTriggerSafe_v1[{idx}])*(lep_relIso03EAv2Lep[{idx}]<0.4)*(lep_pt[{idx}]>20.)" el_tighttemp = "({loose})*(lep_relIso03EAv2Lep[{idx}]<0.03)".format( loose=el_loosetemp, idx="{idx}") leadel_loose = el_loosetemp.format(idx="0") leadel_tight = el_tighttemp.format(idx="0") trailel_loose = el_loosetemp.format(idx="1") trailel_tight = el_tighttemp.format(idx="1") bothel_loose = "({})&&({})".format(leadel_loose, trailel_loose) bothel_tight = "({})&&({})".format(leadel_tight, trailel_tight) # Complicated string construction for looes and tight ID electron for three lepton region el3l_loosetemp = "(TMath::Abs(lep_eta[{idx}]<2.4))*(abs(lep_dz[{idx}])<0.1)*(abs(lep_dxy[{idx}])<0.05)*(abs(lep_ip3d[{idx}])<0.015)*((abs(lep_etaSC[{idx}])<=1.479)*(lep_MVA[{idx}]>0.92)+(abs(lep_etaSC[{idx}])>1.479)*(lep_MVA[{idx}]>0.88))*(lep_isTriggerSafe_v1[{idx}])*(lep_relIso03EAv2Lep[{idx}]<0.4)*(lep_pt[{idx}]>20.)" el3l_tighttemp = "({loose})*(lep_relIso03EAv2Lep[{idx}]<0.05)".format( loose=el3l_loosetemp, idx="{idx}") leadel3l_loose = el3l_loosetemp.format(idx="0") leadel3l_tight = el3l_tighttemp.format(idx="0") trailel3l_loose = el3l_loosetemp.format(idx="1") trailel3l_tight = el3l_tighttemp.format(idx="1") bothel3l_loose = "({})&&({})".format(leadel3l_loose, trailel3l_loose) bothel3l_tight = "({})&&({})".format(leadel3l_tight, trailel3l_tight) # Expressions to divide heavy flavor and !(heavy flavor) leadhf = "((lep_motherIdSS[0]==-1)+(lep_motherIdSS[0]==-2))" leadlf = "((lep_motherIdSS[0]!=-1)*(lep_motherIdSS[0]!=-2))" trailhf = "((lep_motherIdSS[1]==-1)+(lep_motherIdSS[1]==-2))" traillf = "((lep_motherIdSS[1]!=-1)*(lep_motherIdSS[1]!=-2))" # MT expression (as I forgot to add a one lepton MT variable in the WWW baby.) MTexpr = "(TMath::Sqrt(2*met" + jecvar + "_pt*lep_pt[0]*(1.0-TMath::Cos(lep_phi[0]-met" + jecvar + "_phi))))" # One lepton kinematic selection onelep_cuts = "(jets" + jecvar + "_p4[0].pt()>40.)" twolep_cuts = "(lep_pdgId[0]*lep_pdgId[1]>0)*(nj30" + jecvar + ">=2)" # if removing bveto twolepos_cuts = "(lep_pdgId[0]*lep_pdgId[1]<0)" # Electroweak control region selection # TwoMuHLT17/Mll_Z fSumw[1]=155.889, x=90, error=1.35664 # TwoElHLT17/Mll_Z fSumw[1]=650.599, x=90, error=18.1318 # The reason they are not integer is because the prescales are run/lumi dependent and this number is an "effective" prescale value calculated by comparing MC to data in a dilepton z-peak from this trigger hlt_mu17_prescale = 155.889 hlt_el17_prescale = 650.599 onelepewkcr_cuts = "(jets" + jecvar + "_p4[0].pt()>40.)*(met_pt>30.)" onelepewkcr2_cuts = "(jets" + jecvar + "_p4[0].pt()>40.)*(lep_pt[0]>30.)*(met_pt<20.)" onelepewkcr3_cuts = "(jets" + jecvar + "_p4[0].pt()>40.)*(lep_pt[0]>50.)" onelepmr_cuts = "(met_pt<20.)*(" + MTexpr + "<20.)*(jets" + jecvar + "_p4[0].pt()>40.)" oneleptrig_cuts = "(abs(lep_pdgId[0])==11)*(mc_HLT_SingleIsoEl17)+(abs(lep_pdgId[0])==13)*(mc_HLT_SingleIsoMu17)" oneleptrig_wgts = "{$(usefakeweight)?([abs(lep_pdgId[0])==11])*([mc_HLT_SingleIsoEl17])*(" + str( hlt_el17_prescale ) + ")+([abs(lep_pdgId[0])==13])*([mc_HLT_SingleIsoMu17])*(" + str( hlt_mu17_prescale) + "):1.}" onelepnvtx_wgts = "{$(usefakeweight)?1.:([abs(lep_pdgId[0])==11])*([TH1Map:nvtxreweight.root:OneElTightEWKCR3NoNvtxRewgt_nvtx([nVert])])+([abs(lep_pdgId[0])==13])*([TH1Map:nvtxreweight.root:OneMuTightEWKCR3NoNvtxRewgt_nvtx([nVert])])}" # These weights are for closure tests. The closure tests are performed for same-sign channel only. weight_elcomb = "([abs(lep_pdgId[0])==11])*([TH2Map:qcd_fakerates.root:qcdel([abs(lep_eta[0])],[lep_pt[0]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[0]-0.03))])])+([abs(lep_pdgId[1])==11])*([TH2Map:qcd_fakerates.root:qcdel([abs(lep_eta[1])],[lep_pt[1]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[1]-0.03))])])" weight_el = "([abs(lep_pdgId[0])==11])*([TH2Map:qcd_fakerates.root:qcdelbcToE([abs(lep_eta[0])],[lep_pt[0]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[0]-0.03))])])+([abs(lep_pdgId[1])==11])*([TH2Map:qcd_fakerates.root:qcdelbcToE([abs(lep_eta[1])],[lep_pt[1]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[1]-0.03))])])" weight_mu = "([abs(lep_pdgId[0])==13])*([TH2Map:qcd_fakerates.root:qcdmu([abs(lep_eta[0])],[lep_pt[0]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[0]-0.03))])])+([abs(lep_pdgId[1])==13])*([TH2Map:qcd_fakerates.root:qcdmu([abs(lep_eta[1])],[lep_pt[1]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[1]-0.03))])])" weight_elEM1D = "([abs(lep_pdgId[0])==11])*([TH1Map:qcd_fakerates.root:qcdelEM1D([lep_pt[0]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[0]-0.03))])])+([abs(lep_pdgId[1])==11])*([TH1Map:qcd_fakerates.root:qcdelEM1D([lep_pt[1]*(1.0+TMath::Max(0.0, lep_relIso03EAv2Lep[1]-0.03))])])" # TQCut objects tqcuts = {} tqcuts["Presel"] = TQCut("Presel", "Presel", PreselCutExpr, PreselWgtExpr) tqcuts["OneLep"] = TQCut( "OneLep", "OneLep", "(nVlep==1)*({})*({})".format(oneleptrig_cuts, onelep_cuts), "({})*({})".format(oneleptrig_wgts, onelepnvtx_wgts)) tqcuts["OneLepNoNvtxRewgt"] = TQCut( "OneLepNoNvtxRewgt", "OneLepNoNvtxRewgt", "(nVlep==1)*({})*({})".format(oneleptrig_cuts, onelep_cuts), "({})".format(oneleptrig_wgts)) tqcuts["TwoLep"] = TQCut("TwoLep", "TwoLep", "(nVlep==2)*({})".format(twolep_cuts), "1") tqcuts["TwoLepOS"] = TQCut("TwoLepOS", "TwoLepOS", "(nVlep==2)*({})".format(twolepos_cuts), "1") tqcuts["OneLepMR"] = TQCut("OneLepMR", "OneLepMR", "(nVlep==1)*({})".format(onelepmr_cuts), "1") tqcuts["OneLepEWKCR"] = TQCut("OneLepEWKCR", "OneLepEWKCR", "(nVlep==1)*({})".format(onelepewkcr_cuts), "1") tqcuts["OneLepEWKCR2"] = TQCut("OneLepEWKCR2", "OneLepEWKCR2", "(nVlep==1)*({})".format(onelepewkcr2_cuts), "1") tqcuts["OneLepEWKCR3"] = TQCut("OneLepEWKCR3", "OneLepEWKCR3", "(nVlep==1)*({})".format(onelepewkcr3_cuts), "1") tqcuts["OneLepEWKCR3NoNvtxRewgt"] = TQCut( "OneLepEWKCR3NoNvtxRewgt", "OneLepEWKCR3NoNvtxRewgt", "(nVlep==1)*({})".format(onelepewkcr3_cuts), "1") tqcuts["OneMu"] = TQCut("OneMu", "OneMu", "(abs(lep_pdgId[0])==13)", "1") tqcuts["OneMuLoose"] = TQCut("OneMuLoose", "OneMuLoose", leadmu_loose, "1") tqcuts["OneMuTight"] = TQCut("OneMuTight", "OneMuTight", leadmu_tight, "1") tqcuts["OneMu3lLoose"] = TQCut("OneMu3lLoose", "OneMu3lLoose", leadmu3l_loose, "1") tqcuts["OneMu3lTight"] = TQCut("OneMu3lTight", "OneMu3lTight", leadmu3l_tight, "1") tqcuts["OneEl"] = TQCut("OneEl", "OneEl", "(abs(lep_pdgId[0])==11)", "1") tqcuts["OneElLoose"] = TQCut("OneElLoose", "OneElLoose", leadel_loose, "1") tqcuts["OneElTight"] = TQCut("OneElTight", "OneElTight", leadel_tight, "1") tqcuts["OneEl3lLoose"] = TQCut("OneEl3lLoose", "OneEl3lLoose", leadel3l_loose, "1") tqcuts["OneEl3lTight"] = TQCut("OneEl3lTight", "OneEl3lTight", leadel3l_tight, "1") tqcuts["OneMuEWKCR"] = TQCut("OneMuEWKCR", "OneMuEWKCR", "(abs(lep_pdgId[0])==13)", "1") tqcuts["OneElEWKCR"] = TQCut("OneElEWKCR", "OneElEWKCR", "(abs(lep_pdgId[0])==11)", "1") tqcuts["OneMuTightEWKCR"] = TQCut("OneMuTightEWKCR", "OneMuTightEWKCR", leadmu_tight, "1") tqcuts["OneElTightEWKCR"] = TQCut("OneElTightEWKCR", "OneElTightEWKCR", leadel_tight, "1") tqcuts["OneMu3lTightEWKCR"] = TQCut("OneMu3lTightEWKCR", "OneMu3lTightEWKCR", leadmu3l_tight, "1") tqcuts["OneEl3lTightEWKCR"] = TQCut("OneEl3lTightEWKCR", "OneEl3lTightEWKCR", leadel3l_tight, "1") tqcuts["OneMuEWKCR2"] = TQCut("OneMuEWKCR2", "OneMuEWKCR2", "(abs(lep_pdgId[0])==13)", "1") tqcuts["OneElEWKCR2"] = TQCut("OneElEWKCR2", "OneElEWKCR2", "(abs(lep_pdgId[0])==11)", "1") tqcuts["OneMuTightEWKCR2"] = TQCut("OneMuTightEWKCR2", "OneMuTightEWKCR2", leadmu_tight, "1") tqcuts["OneElTightEWKCR2"] = TQCut("OneElTightEWKCR2", "OneElTightEWKCR2", leadel_tight, "1") tqcuts["OneMu3lTightEWKCR2"] = TQCut("OneMu3lTightEWKCR2", "OneMu3lTightEWKCR2", leadmu3l_tight, "1") tqcuts["OneEl3lTightEWKCR2"] = TQCut("OneEl3lTightEWKCR2", "OneEl3lTightEWKCR2", leadel3l_tight, "1") tqcuts["OneMuEWKCR3"] = TQCut("OneMuEWKCR3", "OneMuEWKCR3", "(abs(lep_pdgId[0])==13)", "1") tqcuts["OneElEWKCR3"] = TQCut("OneElEWKCR3", "OneElEWKCR3", "(abs(lep_pdgId[0])==11)", "1") tqcuts["OneMuTightEWKCR3"] = TQCut("OneMuTightEWKCR3", "OneMuTightEWKCR3", leadmu_tight, "1") tqcuts["OneElTightEWKCR3"] = TQCut("OneElTightEWKCR3", "OneElTightEWKCR3", leadel_tight, "1") tqcuts["OneMu3lTightEWKCR3"] = TQCut("OneMu3lTightEWKCR3", "OneMu3lTightEWKCR3", leadmu3l_tight, "1") tqcuts["OneEl3lTightEWKCR3"] = TQCut("OneEl3lTightEWKCR3", "OneEl3lTightEWKCR3", leadel3l_tight, "1") tqcuts["OneMuEWKCR3NoNvtxRewgt"] = TQCut("OneMuEWKCR3NoNvtxRewgt", "OneMuEWKCR3NoNvtxRewgt", "(abs(lep_pdgId[0])==13)", "1") tqcuts["OneElEWKCR3NoNvtxRewgt"] = TQCut("OneElEWKCR3NoNvtxRewgt", "OneElEWKCR3NoNvtxRewgt", "(abs(lep_pdgId[0])==11)", "1") tqcuts["OneMuTightEWKCR3NoNvtxRewgt"] = TQCut( "OneMuTightEWKCR3NoNvtxRewgt", "OneMuTightEWKCR3NoNvtxRewgt", leadmu_tight, "1") tqcuts["OneElTightEWKCR3NoNvtxRewgt"] = TQCut( "OneElTightEWKCR3NoNvtxRewgt", "OneElTightEWKCR3NoNvtxRewgt", leadel_tight, "1") tqcuts["OneMu3lTightEWKCR3NoNvtxRewgt"] = TQCut( "OneMu3lTightEWKCR3NoNvtxRewgt", "OneMu3lTightEWKCR3NoNvtxRewgt", leadmu3l_tight, "1") tqcuts["OneEl3lTightEWKCR3NoNvtxRewgt"] = TQCut( "OneEl3lTightEWKCR3NoNvtxRewgt", "OneEl3lTightEWKCR3NoNvtxRewgt", leadel3l_tight, "1") tqcuts["TwoMu"] = TQCut( "TwoMu", "TwoMu", "([ClosureEvtType]==0)*[(abs(lep_pdgId[0]*lep_pdgId[1])==143)]*[(abs(lep_pdgId[0])==11)*(lep_pass_VVV_cutbased_tight[0])+(abs(lep_pdgId[1])==11)*(lep_pass_VVV_cutbased_tight[1])]", "1") # one any muon and one real tight electron with two total leptons tqcuts["TwoMuLoose"] = TQCut( "TwoMuLoose", "TwoMuLoose", "(abs(lep_pdgId[0])==13)*({})+(abs(lep_pdgId[1])==13)*({})".format( leadmu_loose, trailmu_loose), "1") tqcuts["TwoMuTight"] = TQCut( "TwoMuTight", "TwoMuTight", "(abs(lep_pdgId[0])==13)*({})+(abs(lep_pdgId[1])==13)*({})".format( leadmu_tight, trailmu_tight), "1") tqcuts["TwoMuLoosePredict"] = TQCut( "TwoMuLoosePredict", "TwoMuLoosePredict", "(abs(lep_pdgId[0])==13)*({})+(abs(lep_pdgId[1])==13)*({})".format( leadmu_tight, trailmu_tight), "1") tqcuts["TwoMuTightPredict"] = TQCut( "TwoMuTightPredict", "TwoMuTightPredict", "(abs(lep_pdgId[0])==13)*({})*(!({}))+(abs(lep_pdgId[1])==13)*({})*(!({}))" .format(leadmu_loose, leadmu_tight, trailmu_loose, trailmu_tight), weight_mu) tqcuts["TwoMuLoosePredictBVeto"] = TQCut( "TwoMuLoosePredictBVeto", "TwoMuLoosePredictBVeto", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==13)*({})+(abs(lep_pdgId[1])==13)*({}))". format(leadmu_tight, trailmu_tight), "1") tqcuts["TwoMuTightPredictBVeto"] = TQCut( "TwoMuTightPredictBVeto", "TwoMuTightPredictBVeto", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==13)*({})*(!({}))+(abs(lep_pdgId[1])==13)*({})*(!({})))" .format(leadmu_loose, leadmu_tight, trailmu_loose, trailmu_tight), weight_mu) tqcuts["TwoEl"] = TQCut( "TwoEl", "TwoEl", "([ClosureEvtType]==1)*[(abs(lep_pdgId[0]*lep_pdgId[1])==143)]*[(abs(lep_pdgId[0])==13)*(lep_pass_VVV_cutbased_tight[0])+(abs(lep_pdgId[1])==13)*(lep_pass_VVV_cutbased_tight[1])]", "1") # one any electron and one real tight muon with two total leptons tqcuts["TwoElLoose"] = TQCut( "TwoElLoose", "TwoElLoose", "(abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({})".format( leadel_loose, trailel_loose), "1") tqcuts["TwoElTight"] = TQCut( "TwoElTight", "TwoElTight", "(abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({})".format( leadel_tight, trailel_tight), "1") tqcuts["TwoElLoosePredict"] = TQCut( "TwoElLoosePredict", "TwoElLoosePredict", "(abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({})".format( leadel_tight, trailel_tight), "1") tqcuts["TwoElTightPredict"] = TQCut( "TwoElTightPredict", "TwoElTightPredict", "(abs(lep_pdgId[0])==11)*({})*(!({}))+(abs(lep_pdgId[1])==11)*({})*(!({}))" .format(leadel_loose, leadel_tight, trailel_loose, trailel_tight), weight_el) tqcuts["TwoElLoosePredictHF"] = TQCut( "TwoElLoosePredictHF", "TwoElLoosePredictHF", "(abs(lep_pdgId[0])==11)*({})*({})+(abs(lep_pdgId[1])==11)*({})*({})". format(leadel_tight, leadhf, trailel_tight, trailhf), "1") tqcuts["TwoElTightPredictHF"] = TQCut( "TwoElTightPredictHF", "TwoElTightPredictHF", "(abs(lep_pdgId[0])==11)*({})*(!({}))*({})+(abs(lep_pdgId[1])==11)*({})*(!({}))*({})" .format(leadel_loose, leadel_tight, leadhf, trailel_loose, trailel_tight, trailhf), weight_el) tqcuts["TwoElLoosePredictEM1DLF"] = TQCut( "TwoElLoosePredictEM1DLF", "TwoElLoosePredictEM1DLF", "(abs(lep_pdgId[0])==11)*({})*({})+(abs(lep_pdgId[1])==11)*({})*({})". format(leadel_tight, leadlf, trailel_tight, traillf), "1") tqcuts["TwoElTightPredictEM1DLF"] = TQCut( "TwoElTightPredictEM1DLF", "TwoElTightPredictEM1DLF", "(abs(lep_pdgId[0])==11)*({})*(!({}))*({})+(abs(lep_pdgId[1])==11)*({})*(!({}))*({})" .format(leadel_loose, leadel_tight, leadlf, trailel_loose, trailel_tight, traillf), weight_elEM1D) tqcuts["TwoElLoosePredictComb"] = TQCut( "TwoElLoosePredictComb", "TwoElLoosePredictComb", "(abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({})".format( leadel_tight, trailel_tight), "1") tqcuts["TwoElTightPredictComb"] = TQCut( "TwoElTightPredictComb", "TwoElTightPredictComb", "(abs(lep_pdgId[0])==11)*({})*(!({}))+(abs(lep_pdgId[1])==11)*({})*(!({}))" .format(leadel_loose, leadel_tight, trailel_loose, trailel_tight), weight_elcomb) tqcuts["TwoElLoosePredictBVeto"] = TQCut( "TwoElLoosePredictBVeto", "TwoElLoosePredictBVeto", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({}))". format(leadel_tight, trailel_tight), "1") tqcuts["TwoElTightPredictBVeto"] = TQCut( "TwoElTightPredictBVeto", "TwoElTightPredictBVeto", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*(!({}))+(abs(lep_pdgId[1])==11)*({})*(!({})))" .format(leadel_loose, leadel_tight, trailel_loose, trailel_tight), weight_el) tqcuts["TwoElLoosePredictBVetoHF"] = TQCut( "TwoElLoosePredictBVetoHF", "TwoElLoosePredictBVetoHF", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*({})+(abs(lep_pdgId[1])==11)*({})*({}))" .format(leadel_tight, leadhf, trailel_tight, trailhf), "1") tqcuts["TwoElTightPredictBVetoHF"] = TQCut( "TwoElTightPredictBVetoHF", "TwoElTightPredictBVetoHF", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*(!({}))*({})+(abs(lep_pdgId[1])==11)*({})*(!({}))*({}))" .format(leadel_loose, leadel_tight, leadhf, trailel_loose, trailel_tight, trailhf), weight_el) tqcuts["TwoElLoosePredictBVetoEM1DLF"] = TQCut( "TwoElLoosePredictBVetoEM1DLF", "TwoElLoosePredictBVetoEM1DLF", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*({})+(abs(lep_pdgId[1])==11)*({})*({}))" .format(leadel_tight, leadlf, trailel_tight, traillf), "1") tqcuts["TwoElTightPredictBVetoEM1DLF"] = TQCut( "TwoElTightPredictBVetoEM1DLF", "TwoElTightPredictBVetoEM1DLF", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*(!({}))*({})+(abs(lep_pdgId[1])==11)*({})*(!({}))*({}))" .format(leadel_loose, leadel_tight, leadlf, trailel_loose, trailel_tight, traillf), weight_elEM1D) tqcuts["TwoElLoosePredictBVetoComb"] = TQCut( "TwoElLoosePredictBVetoComb", "TwoElLoosePredictBVetoComb", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})+(abs(lep_pdgId[1])==11)*({}))". format(leadel_tight, trailel_tight), "1") tqcuts["TwoElTightPredictBVetoComb"] = TQCut( "TwoElTightPredictBVetoComb", "TwoElTightPredictBVetoComb", "(nb" + jecvar + "==0)*((abs(lep_pdgId[0])==11)*({})*(!({}))+(abs(lep_pdgId[1])==11)*({})*(!({})))" .format(leadel_loose, leadel_tight, trailel_loose, trailel_tight), weight_elcomb) tqcuts["TwoMuHLT8"] = TQCut( "TwoMuHLT8", "TwoMuHLT8", "(mc_HLT_SingleIsoMu8)*(MllSS>60.)*(MllSS<120.)", "1") tqcuts["TwoMuHLT17"] = TQCut( "TwoMuHLT17", "TwoMuHLT17", "(mc_HLT_SingleIsoMu17)*(MllSS>60.)*(MllSS<120.)", "1") tqcuts["TwoElHLT8"] = TQCut( "TwoElHLT8", "TwoElHLT8", "(mc_HLT_SingleIsoEl8)*(MllSS>60.)*(MllSS<120.)", "1") tqcuts["TwoElHLT17"] = TQCut( "TwoElHLT17", "TwoElHLT17", "(mc_HLT_SingleIsoEl17)*(MllSS>60.)*(MllSS<120.)", "1") # Linking TQCut objects tqcuts["Presel"].addCut(tqcuts["OneLep"]) tqcuts["Presel"].addCut(tqcuts["OneLepNoNvtxRewgt"]) tqcuts["Presel"].addCut(tqcuts["TwoLep"]) tqcuts["Presel"].addCut(tqcuts["TwoLepOS"]) tqcuts["OneLep"].addCut(tqcuts["OneLepMR"]) tqcuts["OneLep"].addCut(tqcuts["OneLepEWKCR"]) tqcuts["OneLep"].addCut(tqcuts["OneLepEWKCR2"]) tqcuts["OneLep"].addCut(tqcuts["OneLepEWKCR3"]) tqcuts["OneLepNoNvtxRewgt"].addCut(tqcuts["OneLepEWKCR3NoNvtxRewgt"]) tqcuts["OneLepMR"].addCut(tqcuts["OneMu"]) tqcuts["OneMu"].addCut(tqcuts["OneMuLoose"]) tqcuts["OneMuLoose"].addCut(tqcuts["OneMuTight"]) tqcuts["OneMu"].addCut(tqcuts["OneMu3lLoose"]) tqcuts["OneMu3lLoose"].addCut(tqcuts["OneMu3lTight"]) tqcuts["OneLepMR"].addCut(tqcuts["OneEl"]) tqcuts["OneEl"].addCut(tqcuts["OneElLoose"]) tqcuts["OneElLoose"].addCut(tqcuts["OneElTight"]) tqcuts["OneEl"].addCut(tqcuts["OneEl3lLoose"]) tqcuts["OneEl3lLoose"].addCut(tqcuts["OneEl3lTight"]) tqcuts["OneLepEWKCR"].addCut(tqcuts["OneMuEWKCR"]) tqcuts["OneLepEWKCR"].addCut(tqcuts["OneElEWKCR"]) tqcuts["OneMuEWKCR"].addCut(tqcuts["OneMuTightEWKCR"]) tqcuts["OneElEWKCR"].addCut(tqcuts["OneElTightEWKCR"]) tqcuts["OneMuEWKCR"].addCut(tqcuts["OneMu3lTightEWKCR"]) tqcuts["OneElEWKCR"].addCut(tqcuts["OneEl3lTightEWKCR"]) tqcuts["OneLepEWKCR2"].addCut(tqcuts["OneMuEWKCR2"]) tqcuts["OneLepEWKCR2"].addCut(tqcuts["OneElEWKCR2"]) tqcuts["OneMuEWKCR2"].addCut(tqcuts["OneMuTightEWKCR2"]) tqcuts["OneElEWKCR2"].addCut(tqcuts["OneElTightEWKCR2"]) tqcuts["OneMuEWKCR2"].addCut(tqcuts["OneMu3lTightEWKCR2"]) tqcuts["OneElEWKCR2"].addCut(tqcuts["OneEl3lTightEWKCR2"]) tqcuts["OneLepEWKCR3"].addCut(tqcuts["OneMuEWKCR3"]) tqcuts["OneLepEWKCR3"].addCut(tqcuts["OneElEWKCR3"]) tqcuts["OneMuEWKCR3"].addCut(tqcuts["OneMuTightEWKCR3"]) tqcuts["OneElEWKCR3"].addCut(tqcuts["OneElTightEWKCR3"]) tqcuts["OneMuEWKCR3"].addCut(tqcuts["OneMu3lTightEWKCR3"]) tqcuts["OneElEWKCR3"].addCut(tqcuts["OneEl3lTightEWKCR3"]) tqcuts["OneLepEWKCR3NoNvtxRewgt"].addCut(tqcuts["OneMuEWKCR3NoNvtxRewgt"]) tqcuts["OneLepEWKCR3NoNvtxRewgt"].addCut(tqcuts["OneElEWKCR3NoNvtxRewgt"]) tqcuts["OneMuEWKCR3NoNvtxRewgt"].addCut( tqcuts["OneMuTightEWKCR3NoNvtxRewgt"]) tqcuts["OneElEWKCR3NoNvtxRewgt"].addCut( tqcuts["OneElTightEWKCR3NoNvtxRewgt"]) tqcuts["OneMuEWKCR3NoNvtxRewgt"].addCut( tqcuts["OneMu3lTightEWKCR3NoNvtxRewgt"]) tqcuts["OneElEWKCR3NoNvtxRewgt"].addCut( tqcuts["OneEl3lTightEWKCR3NoNvtxRewgt"]) tqcuts["TwoLep"].addCut(tqcuts["TwoMu"]) tqcuts["TwoMu"].addCut(tqcuts["TwoMuLoosePredict"]) tqcuts["TwoMu"].addCut(tqcuts["TwoMuTightPredict"]) tqcuts["TwoMu"].addCut(tqcuts["TwoMuLoosePredictBVeto"]) tqcuts["TwoMu"].addCut(tqcuts["TwoMuTightPredictBVeto"]) tqcuts["TwoMu"].addCut(tqcuts["TwoMuLoose"]) tqcuts["TwoMuLoose"].addCut(tqcuts["TwoMuTight"]) tqcuts["TwoLep"].addCut(tqcuts["TwoEl"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredict"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredict"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictComb"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictComb"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictHF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictHF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictEM1DLF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictEM1DLF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictBVeto"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictBVeto"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictBVetoComb"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictBVetoComb"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictBVetoHF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictBVetoHF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoosePredictBVetoEM1DLF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElTightPredictBVetoEM1DLF"]) tqcuts["TwoEl"].addCut(tqcuts["TwoElLoose"]) tqcuts["TwoElLoose"].addCut(tqcuts["TwoElTight"]) tqcuts["TwoLepOS"].addCut(tqcuts["TwoMuHLT8"]) tqcuts["TwoLepOS"].addCut(tqcuts["TwoMuHLT17"]) tqcuts["TwoLepOS"].addCut(tqcuts["TwoElHLT8"]) tqcuts["TwoLepOS"].addCut(tqcuts["TwoElHLT17"]) # Grand cut cuts = tqcuts["Presel"] # # # Define histograms # # # N.B. Any 2D histogram must have "_vs_" in the name. This is an important conventino for the makeplot.py script to be able to distinguish the 1D vs. 2D histogram. filename = ".histo.mr.{}.cfg".format(index) f = open(filename, "w") f.write(""" TH2F('lep_pt_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{20, 30, 40, 50, 60, 70, 150, 2000}} ) << (abs(lep_eta[0]) : '|\#eta|', lep_pt[0] : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_pt_vs_eta; TH2F('lep_ptcorr_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}} ) << (abs(lep_eta[0]) : '|\#eta|', TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.) : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_ptcorr_vs_eta; TH2F('lep_ptcorrcoarse_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << (abs(lep_eta[0]) : '|\#eta|', TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.) : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_ptcorrcoarse_vs_eta; TH2F('lep_ptcorrcoarse_vs_etacoarse' , '' , {{0, 1.6, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << (abs(lep_eta[0]) : '|\#eta|', TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.) : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_ptcorrcoarse_vs_etacoarse; TH2F('el3l_ptcorrcoarse_vs_etacoarse' , '' , {{0, 1.6, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << (abs(lep_eta[0]) : '|\#eta|', TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.05)),119.) : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: el3l_ptcorrcoarse_vs_etacoarse; TH2F('mu3l_ptcorrcoarse_vs_etacoarse' , '' , {{0, 1.6, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << (abs(lep_eta[0]) : '|\#eta|', TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.07)),119.) : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: mu3l_ptcorrcoarse_vs_etacoarse; TH1F('lep_pt' , '' , 180 , 0. , 250 ) << (lep_pt[0] : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_pt; TH1F('lep_pt' , '' , 180 , 0. , 250 ) << (lep_pt[0] : '\#it{{p}}_{{T}} [GeV]'); @OneLep/*: lep_pt; TH1F('lep_pdgId' , '' , 40 , -20. , 20 ) << (lep_pdgId[0] : 'Lepton PDG ID'); @OneLep/*: lep_pdgId; TH1F('lep_ptcorr' , '' , 180 , 0. , 250 ) << (lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)) : '\#it{{p}}_{{T, cone-corr}} [GeV]'); @OneLep/*: lep_ptcorr; TH1F('lep_ptcorrvarbin' , '' , {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}}) << (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.) : '\#it{{p}}_{{T, cone-corr}} [GeV]'); @OneLep/*: lep_ptcorrvarbin; TH1F('lep_ptcorrvarbincoarse' , '' , {{0., 10., 20., 25., 30., 40., 120.}}) << (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.) : '\#it{{p}}_{{T, cone-corr}} [GeV]'); @OneLep/*: lep_ptcorrvarbincoarse; TH1F('el3l_ptcorrvarbincoarse' , '' , {{0., 10., 20., 25., 30., 40., 120.}}) << (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.05)),119.) : '\#it{{p}}_{{T, cone-corr}} [GeV]'); @OneLep/*: el3l_ptcorrvarbincoarse; TH1F('mu3l_ptcorrvarbincoarse' , '' , {{0., 10., 20., 25., 30., 40., 120.}}) << (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.07)),119.) : '\#it{{p}}_{{T, cone-corr}} [GeV]'); @OneLep/*: mu3l_ptcorrvarbincoarse; TH1F('lep_yield' , '' , 1, 0, 1) << (0 : 'yield'); @OneLep/*: lep_yield; TH1F('lep_eta' , '' , 180 , -2.5 , 2.5 ) << (lep_eta[0] : '\#eta'); @OneLep/*: lep_eta; TH1F('lep_etavarbin' , '' , {{-2.5, -2.1, -1.6, -1.0, 0.0, 1.0, 1.6, 2.1, 2.5}} ) << (lep_eta[0] : '\#eta'); @OneLep/*: lep_etavarbin; TH1F('lep_relIso03EAv2Lep' , '' , 180 , 0.0 , 0.6 ) << (lep_relIso03EAv2Lep[0] : 'I_{{R=0.3,EA,Lep}}'); @OneLep/*: lep_relIso03EAv2Lep; TH1F('mu_ptcorrvarbin' , '' , {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}}) << ((TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==13)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoMu/*: mu_ptcorrvarbin; TH1F('mu_ptcorrvarbincoarse' , '' , {{0., 10., 20., 25., 30., 40., 120.}}) << ((TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==13)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoMu/*: mu_ptcorrvarbincoarse; TH1F('mu_yield' , '' , 1, 0, 1) << (0 : 'yield'); @TwoMu/*: mu_yield; TH2F('mu_ptcorr_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==13)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==13) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==13)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoMu/*: mu_ptcorr_vs_eta; TH2F('mu_ptcorrcoarse_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 10., 20., 25., 30., 40., 60., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==13)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==13) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==13)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoMu/*: mu_ptcorrcoarse_vs_eta; TH2F('mu_ptcorrcoarse_vs_etacoarse' , '' , {{0, 1.6, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==13)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==13) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==13)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoMu/*: mu_ptcorrcoarse_vs_etacoarse; TH1F('mu_pt' , '' , 180 , 0., 250) << ((lep_pt[0])*(abs(lep_pdgId[0])==13)+(lep_pt[1])*(abs(lep_pdgId[1])==13) : '\#it{{p}}_{{T, \#mu}} [GeV]'); @TwoMu/*: mu_pt; TH1F('mu_eta' , '' , 180 , -2.5, 2.5) << ((lep_eta[0])*(abs(lep_pdgId[0])==13)+(lep_eta[1])*(abs(lep_pdgId[1])==13) : '\#eta_{{\#mu}}'); @TwoMu/*: mu_eta; TH1F('mu_etavarbin' , '' , {{-2.5, -2.1, -1.6, -1.0, 0.0, 1.0, 1.6, 2.1, 2.5}} ) << (lep_eta[0] : '\#eta'); @TwoMu/*: mu_etavarbin; TH1F('mu_relIso03EAv2Lep' , '' , 180 , 0., 0.6) << ((lep_relIso03EAv2Lep[0])*(abs(lep_pdgId[0])==13)+(lep_relIso03EAv2Lep[1])*(abs(lep_pdgId[1])==13) : 'I_{{R=0.3,EA,Lep,\#mu}}'); @TwoMu/*: mu_relIso03EAv2Lep; TH2F('el_ptcorr_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==11)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==11) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==11)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoEl/*: el_ptcorr_vs_eta; TH2F('el_ptcorrcoarse_vs_eta' , '' , {{0, 0.9, 1.6, 1.9, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==11)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==11) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==11)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoEl/*: el_ptcorrcoarse_vs_eta; TH2F('el_ptcorrcoarse_vs_etacoarse' , '' , {{0, 1.6, 2.4}}, {{0., 10., 20., 25., 30., 40., 120.}} ) << ((abs(lep_eta[0]))*(abs(lep_pdgId[0])==11)+(abs(lep_eta[1]))*(abs(lep_pdgId[1])==11) : '|\#eta|', (TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==11)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, cone-corr, mu}} [GeV]'); @TwoEl/*: el_ptcorrcoarse_vs_etacoarse; TH1F('el_ptcorrvarbin' , '' , {{0., 5., 10., 15., 20., 25., 30., 35., 40., 45., 60., 80., 120.}}) << ((TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==11)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, cone-corr, el}} [GeV]'); @TwoEl/*: el_ptcorrvarbin; TH1F('el_ptcorrvarbincoarse' , '' , {{0., 10., 20., 25., 30., 40., 120.}}) << ((TMath::Min(lep_pt[0]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[0]-0.03)),119.))*(abs(lep_pdgId[0])==11)+(TMath::Min(lep_pt[1]*(1.+TMath::Max(0.,lep_relIso03EAv2Lep[1]-0.03)),119.))*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, cone-corr, el}} [GeV]'); @TwoEl/*: el_ptcorrvarbincoarse; TH1F('el_yield' , '' , 1, 0, 1) << (0 : 'yield'); @TwoEl/*: el_yield; TH1F('el_pt' , '' , 180 , 0., 250) << ((lep_pt[0])*(abs(lep_pdgId[0])==11)+(lep_pt[1])*(abs(lep_pdgId[1])==11) : '\#it{{p}}_{{T, el}} [GeV]'); @TwoEl/*: el_pt; TH1F('el_eta' , '' , 180 , -2.5, 2.5) << ((lep_eta[0])*(abs(lep_pdgId[0])==11)+(lep_eta[1])*(abs(lep_pdgId[1])==11) : '\#eta_{{el}}'); @TwoEl/*: el_eta; TH1F('el_etavarbin' , '' , {{-2.5, -2.1, -1.6, -1.0, 0.0, 1.0, 1.6, 2.1, 2.5}} ) << (lep_eta[0] : '\#eta'); @TwoEl/*: el_etavarbin; TH1F('el_relIso03EAv2Lep' , '' , 180 , 0., 0.6) << ((lep_relIso03EAv2Lep[0])*(abs(lep_pdgId[0])==11)+(lep_relIso03EAv2Lep[1])*(abs(lep_pdgId[1])==11) : 'I_{{R=0.3,EA,Lep,el}}'); @TwoEl/*: el_relIso03EAv2Lep; TH1F('Mjj_el' , '' , 180 , 0., 180. ) << ({Mjj} : '\#it{{m}}_{{jj}} [GeV]'); @TwoEl/*: Mjj_el; TH1F('Mjj_mu' , '' , 180 , 0., 180. ) << ({Mjj} : '\#it{{m}}_{{jj}} [GeV]'); @TwoMu/*: Mjj_mu; TH1F('Mll_el' , '' , 180 , 0., 180. ) << (MllSS : '\#it{{m}}_{{ll}} [GeV]'); @TwoEl/*: Mll_el; TH1F('Mll_mu' , '' , 180 , 0., 180. ) << (MllSS : '\#it{{m}}_{{ll}} [GeV]'); @TwoMu/*: Mll_mu; TH1F('DPhill_el' , '' , 180 , 0., 3.1416 ) << (TMath::Abs(TVector2::Phi_mpi_pi(lep_phi[0]-lep_phi[1])) : '\#it{{m}}_{{ll}} [GeV]'); @TwoEl/*: DPhill_el; TH1F('DPhill_mu' , '' , 180 , 0., 3.1416 ) << (TMath::Abs(TVector2::Phi_mpi_pi(lep_phi[0]-lep_phi[1])) : '\#it{{m}}_{{ll}} [GeV]'); @TwoMu/*: DPhill_mu; TH1F('MET_el' , '' , 180 , 0., 180. ) << ({MET} : 'MET [GeV]'); @TwoEl/*: MET_el; TH1F('MET_mu' , '' , 180 , 0., 180. ) << ({MET} : 'MET [GeV]'); @TwoMu/*: MET_mu; TH1F('MTmax_el' , '' , 180 , 0., 180. ) << ({MTmax} : '\#it{{m}}_{{T,max}} [GeV]'); @TwoEl/*: MTmax_el; TH1F('MTmax_mu' , '' , 180 , 0., 180. ) << ({MTmax} : '\#it{{m}}_{{T,max}} [GeV]'); @TwoMu/*: MTmax_mu; TH1F('nb_el' , '' , 5, 0., 5.) << ({nb} : 'N_{{b-jets}}'); @TwoEl/*: nb_el; TH1F('nb_mu' , '' , 5, 0., 5.) << ({nb} : 'N_{{b-jets}}'); @TwoMu/*: nb_mu; TH1F('nj30_el' , '' , 5, 0., 5.) << ({nj30} : 'N_{{jets,30,cent}}'); @TwoEl/*: nj30_el; TH1F('nj30_mu' , '' , 5, 0., 5.) << ({nj30} : 'N_{{jets,30,cent}}'); @TwoMu/*: nj30_mu; TH1F('nj_el' , '' , 5, 0., 5.) << ({nj} : 'N_{{jets,all}}'); @TwoEl/*: nj_el; TH1F('nj_mu' , '' , 5, 0., 5.) << ({nj} : 'N_{{jets,all}}'); @TwoMu/*: nj_mu; TH1F('Mll_Z' , '' , 180 , 60., 120. ) << (MllSS : '\#it{{m}}_{{ll}} [GeV]'); @TwoLepOS/*: Mll_Z; TH1F('MTOneLep' , '' , 180 , 0., 180. ) << ({MT} : '\#it{{m}}_{{T}} [GeV]'); @*/*: MTOneLep; TH1F('MTOneLepFixed' , '' , 20 , 0., 200. ) << ({MT} : '\#it{{m}}_{{T}} [GeV]'); @*/*: MTOneLepFixed; TH1F('nvtx' , '' , 60 , 0., 60. ) << (nVert : 'N_{{vtx}}'); @*/*: nvtx; """.format(Mjj="Mjj" + jecvar, MET="met" + jecvar + "_pt", nb="nb" + jecvar, nj30="nj30" + jecvar, nj="nj" + jecvar, MT=MTexpr, MTmax="MTmax" + jecvar)) f.close() # # # Book Analysis Jobs (Histogramming, Cutflow, Event lists) # # histojob = TQHistoMakerAnalysisJob() histojob.importJobsFromTextFiles(filename, cuts, "*", True if index < 0 else False) # Analysis jobs cutflowjob = TQCutflowAnalysisJob("cutflow") cuts.addAnalysisJob(cutflowjob, "*") # Eventlist jobs (use this if we want to print out some event information in a text format e.g. run, lumi, evt or other variables.) #eventlistjob = TQEventlistAnalysisJob("eventlist") #eventlistjob.importJobsFromTextFiles("eventlist.cfg", cuts, "*", True) # Print cuts and numebr of booked analysis jobs for debugging purpose if index < 0: samples.printContents("t[*status]dr") cuts.printCut("trd") return # # # Add custom tqobservable that can do more than just string based draw statements # # from QFramework import TQWWWMTOneLep, TQWWWClosureEvtType customobservables = {} customobservables["MTOneLep"] = TQWWWMTOneLep("MTOneLep") customobservables["ClosureEvtType"] = TQWWWClosureEvtType("ClosureEvtType") TQObservable.addObservable(customobservables["MTOneLep"], "MTOneLep") TQObservable.addObservable(customobservables["ClosureEvtType"], "ClosureEvtType") # # # Loop over the samples # # # setup a visitor to actually loop over ROOT files vis = TQAnalysisSampleVisitor(cuts, True) #vis.setMaxEvents(30000) # to debug by restricting the looping to 30k max events if index >= 0: # Get all sample lists sample_names, sample_full_names = getSampleLists(samples) # Select the job based on the index sample_name = sample_names[index] sample_full_name = sample_full_names[sample_name] # Run the job! samples.visitSampleFolders(vis, "/*/{}".format(sample_full_name)) # Write the output histograms and cutflow cut values and etc. samples.writeToFile(".output_{}.root".format(sample_name), True) else: # Run the job! samples.visitSampleFolders(vis) # Write the output histograms and cutflow cut values and etc. samples.writeToFile("output.root", True)