예제 #1
0
파일: analyze.py 프로젝트: xylary/QUANTAXIS
    def calc_factor_alpha_beta(
            self,
            returns: pd.DataFrame = None,
            demeaned: bool = True,
            group_adjust: bool = False,
            equal_weight: bool = False,
    ):
        """
        计算因子的 alpha 和 beta
        因子加权组合每日收益 = beta x 市场组合每期收益 + alpha

        参数
        ---
        :param returns: 构建多空组合的加权收益, 默认为 None,
             为 None 时,会调用 performance 的 factor_returns,
             根据因子值构建多空组合,计算相应的按日期[或按资产]收益
        :param demeaned: 使用超额收益
        :param group_adjust: 行业中性
        :param equal_weight: 默认为 False, 如果为 True,
             分别对因子中位数构建多空组合, 多空组合权重相等
        """
        return perf.factor_alpha_beta(
            factor_data=self._clean_factor_data,
            demeaned=demeaned,
            group_adjust=group_adjust,
        )
예제 #2
0
def create_summary_tear_sheet(factor_data: pd.DataFrame,
                              long_short: bool = True,
                              group_neutral: bool = False):
    """

    """
    # Return Analysis
    mean_quant_ret, std_quantiles = perf.mean_return_by_quantile(
        factor_data,
        by_group=False,
        demeaned=long_short,
        group_adjust=group_neutral)

    mean_quant_rateret = mean_quant_ret.apply(
        utils.rate_of_return, axis=0, base_period=mean_quant_ret.columns[0])

    mean_quant_ret_bydatetime, std_quant_bydatetime = perf.mean_return_by_quantile(
        factor_data,
        by_datetime=True,
        by_group=False,
        demeaned=long_short,
        group_adjust=group_neutral,
    )

    mean_quant_rateret_bydatetime = mean_quant_ret_bydatetime.apply(
        utils.rate_of_return,
        axis=0,
        base_period=mean_quant_ret_bydatetime.columns[0])
    std_quant_bydatetime = std_quant_bydatetime.apply(
        utils.std_conversion,
        axis=0,
        base_period=std_quant_bydatetime.columns[0])
    alpha_beta = perf.factor_alpha_beta(factor_data,
                                        demeaned=long_short,
                                        group_adjust=group_neutral)
    mean_ret_spread_quant, std_spread_quant = perf.mean_returns_spread(
        mean_quant_rateret_bydatetime,
        factor_data["factor_quantile"].max(),
        factor_data["factor_quantile"].min(),
        std_err=std_quant_bydatetime,
    )

    periods = utils.get_forward_returns_columns(factor_data.columns)

    fr_cols = len(periods)
    vertical_sections = 2 + fr_cols * 3
    gr = GridFigure(rows=vertical_sections, cols=1)

    plot_quantile_statistics_table(factor_data)
    plot_quantile_returns_bar(mean_quant_rateret,
                              by_group=False,
                              ylim_percentiles=None,
                              ax=gf.next_row())
예제 #3
0
def create_summary_tear_sheet(
        factor_data: pd.DataFrame,
        by_datetime: bool = True,  # 按日期计算
        by_group: bool = False,  # 按分组计算
        long_short: bool = True,  # 多空组合
        group_neutral: bool = False,  # 分组中性
        periods: Union[int, Tuple[int], List[int]] = 1,
        frequence: str = '1d'):
    """
    创建一个小型的汇总表格,包括因子的收益率分析,IC 值,换手率等分析

    参数
    ---
    :param factor_data: 因子数据
    :param long_short: 是否构建多空组合,在该组合上进行进行分析。
    :param group_neutral: 是否进行行业中性
    """
    if isinstance(periods, int):
        periods = [
            periods,
        ]
    # 收益分析
    mean_quant_ret, std_quant = perf.mean_return_by_quantile(
        factor_data,
        by_group=by_group,
        demeaned=long_short,
        group_adjust=group_neutral)
    mean_quant_rateret = mean_quant_ret.apply(
        utils.rate_of_return, axis=0, base_period=mean_quant_ret.columns[0])
    std_quant_rate = std_quant.apply(utils.std_conversion,
                                     axis=0,
                                     base_period=std_quant.columns[0])

    mean_quant_ret_bydatetime, std_quant_bydatetime = perf.mean_return_by_quantile(
        factor_data,
        by_datetime=by_datetime,
        by_group=by_group,
        demeaned=long_short,
        group_adjust=group_neutral)

    mean_quant_rateret_bydatetime = mean_quant_ret_bydatetime.apply(
        utils.rate_of_return,
        axis=0,
        base_period=mean_quant_ret_bydatetime.columns[0])
    std_quant_rate_bydatetime = std_quant_bydatetime.apply(
        utils.std_conversion,
        axis=0,
        base_period=std_quant_bydatetime.columns[0])

    alpha_beta = perf.factor_alpha_beta(factor_data=factor_data,
                                        demeaned=long_short,
                                        group_adjust=group_neutral)

    mean_ret_spread_quant, std_spread_quant = perf.mean_returns_spread(
        mean_quant_rateret,
        upper_quant=factor_data.factor_quantile.max(),
        lower_quant=factor_data.factor_quantile.min(),
        std_err=std_quant_rate)

    fr_cols = utils.get_forward_returns_columns(factor_data.columns)

    vertical_sections = 2 + len(fr_cols) * 3
    gf = GridFigure(rows=vertical_sections, cols=1)

    plotting.plot_quantile_statistics_table(factor_data)
    plotting.plot_returns_table(alpha_beta, mean_quant_rateret,
                                mean_ret_spread_quant)
    plotting.plot_quantile_returns_bar(mean_quant_rateret,
                                       by_group=by_group,
                                       ylim_percentiles=None,
                                       ax=gf.next_row())

    # Information Analysis
    ic = perf.factor_information_coefficient(factor_data)
    plotting.plot_information_table(ic)

    # Turnover Analysis
    # FIXME: 股票是 T+1,意味着频率只能是 Day 及以上频率
    quantile_factor = factor_data["factor_quantile"]
    quantile_turnover = {
        p: pd.concat(
            [
                perf.quantile_turnover(quantile_factor, q, p)
                for q in range(1,
                               int(quantile_factor.max()) + 1)
            ],
            axis=1,
        )
        for p in periods
    }
    autocorrelation = pd.concat(
        [
            perf.factor_rank_autocorrelation(factor_data, period)
            for period in periods
        ],
        axis=1,
    )

    plotting.plot_turnover_table(autocorrelation, quantile_turnover)

    plt.show()
    gf.close()