class VolumeWeightedAveragePriceExecutionModel: '''Execution model that submits orders while the current market price is more favorable that the current volume weighted average price.''' def __init__(self): '''Initializes a new instance of the VolumeWeightedAveragePriceExecutionModel class''' self.targetsCollection = PortfolioTargetCollection() self.symbolData = {} # Gets or sets the maximum order quantity as a percentage of the current bar's volume. # This defaults to 0.01m = 1%. For example, if the current bar's volume is 100, # then the maximum order size would equal 1 share. self.MaximumOrderQuantityPercentVolume = 0.01 def Execute(self, algorithm, targets): '''Executes market orders if the standard deviation of price is more than the configured number of deviations in the favorable direction. Args: algorithm: The algorithm instance targets: The portfolio targets''' # update the complete set of portfolio targets with the new targets self.targetsCollection.AddRange(targets) for target in self.targetsCollection: symbol = target.Symbol # calculate remaining quantity to be ordered unorderedQuantity = OrderSizing.GetUnorderedQuantity( algorithm, target) # fetch our symbol data containing our VWAP indicator data = self.symbolData.get(symbol, None) if data is None: return # ensure we're receiving price data before submitting orders if data.Security.Price == 0: return # check order entry conditions if self.PriceIsFavorable(data, unorderedQuantity): # get the maximum order size based on total order value maxOrderSize = OrderSizing.PercentVolume( data.Security, self.MaximumOrderQuantityPercentVolume) orderSize = np.min([maxOrderSize, np.abs(unorderedQuantity)]) # round down to even lot size orderSize -= orderSize % data.Security.SymbolProperties.LotSize if orderSize != 0: algorithm.MarketOrder( symbol, np.sign(unorderedQuantity) * orderSize) # check to see if we're done with this target unorderedQuantity = OrderSizing.GetUnorderedQuantity( algorithm, target) if unorderedQuantity == 0: self.targetsCollection.Remove(target.Symbol) def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for removed in changes.RemovedSecurities: # clean up removed security data if removed.Symbol in self.symbolData: if self.IsSafeToRemove(algorithm, removed.Symbol): data = self.symbolData.pop(removed.Symbol) algorithm.SubscriptionManager.RemoveConsolidator( removed.Symbol, data.Consolidator) for added in changes.AddedSecurities: if added.Symbol not in self.symbolData: self.symbolData[added.Symbol] = SymbolData(algorithm, added) def PriceIsFavorable(self, data, unorderedQuantity): '''Determines if the current price is more than the configured number of standard deviations away from the mean in the favorable direction.''' if unorderedQuantity > 0: if data.Security.BidPrice < data.VWAP: return True else: if data.Security.AskPrice > data.VWAP: return True return False def IsSafeToRemove(self, algorithm, symbol): '''Determines if it's safe to remove the associated symbol data''' # confirm the security isn't currently a member of any universe return not any([ kvp.Value.ContainsMember(symbol) for kvp in algorithm.UniverseManager ])
class StandardDeviationExecutionModel(ExecutionModel): '''Execution model that submits orders while the current market prices is at least the configured number of standard deviations away from the mean in the favorable direction (below/above for buy/sell respectively)''' def __init__(self, period=60, deviations=2, resolution=Resolution.Minute): '''Initializes a new instance of the StandardDeviationExecutionModel class Args: period: Period of the standard deviation indicator deviations: The number of deviations away from the mean before submitting an order resolution: The resolution of the STD and SMA indicators''' self.period = period self.deviations = deviations self.resolution = resolution self.targetsCollection = PortfolioTargetCollection() self.symbolData = {} # Gets or sets the maximum order value in units of the account currency. # This defaults to $20,000. For example, if purchasing a stock with a price # of $100, then the maximum order size would be 200 shares. self.MaximumOrderValue = 20000 def Execute(self, algorithm, targets): '''Executes market orders if the standard deviation of price is more than the configured number of deviations in the favorable direction. Args: algorithm: The algorithm instance targets: The portfolio targets''' self.targetsCollection.AddRange(targets) for target in self.targetsCollection.OrderByMarginImpact(algorithm): symbol = target.Symbol # calculate remaining quantity to be ordered unorderedQuantity = OrderSizing.GetUnorderedQuantity( algorithm, target) # fetch our symbol data containing our STD/SMA indicators data = self.symbolData.get(symbol, None) if data is None: return # ensure we're receiving price data before submitting orders if data.Security.Price == 0: return # check order entry conditions if data.STD.IsReady and self.PriceIsFavorable( data, unorderedQuantity): # get the maximum order size based on total order value maxOrderSize = OrderSizing.Value(data.Security, self.MaximumOrderValue) orderSize = np.min([maxOrderSize, np.abs(unorderedQuantity)]) # round down to even lot size orderSize -= orderSize % data.Security.SymbolProperties.LotSize if orderSize != 0: algorithm.MarketOrder( symbol, np.sign(unorderedQuantity) * orderSize) # check to see if we're done with this target unorderedQuantity = OrderSizing.GetUnorderedQuantity( algorithm, target) if unorderedQuantity == 0: self.targetsCollection.Remove(target.Symbol) def OnSecuritiesChanged(self, algorithm, changes): '''Event fired each time the we add/remove securities from the data feed Args: algorithm: The algorithm instance that experienced the change in securities changes: The security additions and removals from the algorithm''' for removed in changes.RemovedSecurities: # clean up data from removed securities if removed.Symbol in self.symbolData: if self.IsSafeToRemove(algorithm, removed.Symbol): data = self.symbolData.pop(removed.Symbol) algorithm.SubscriptionManager.RemoveConsolidator( removed.Symbol, data.Consolidator) addedSymbols = [] for added in changes.AddedSecurities: if added.Symbol not in self.symbolData: self.symbolData[added.Symbol] = SymbolData( algorithm, added, self.period, self.resolution) addedSymbols.append(added.Symbol) if len(addedSymbols) > 0: # warmup our indicators by pushing history through the consolidators history = algorithm.History(addedSymbols, self.period, self.resolution) if history.empty: return tickers = history.index.levels[0] for ticker in tickers: symbol = SymbolCache.GetSymbol(ticker) symbolData = self.symbolData[symbol] for tuple in history.loc[ticker].itertuples(): bar = TradeBar(tuple.Index, symbol, tuple.open, tuple.high, tuple.low, tuple.close, tuple.volume) symbolData.Consolidator.Update(bar) def PriceIsFavorable(self, data, unorderedQuantity): '''Determines if the current price is more than the configured number of standard deviations away from the mean in the favorable direction.''' deviations = self.deviations * data.STD.Current.Value if unorderedQuantity > 0: if data.Security.BidPrice < data.SMA.Current.Value - deviations: return True else: if data.Security.AskPrice > data.SMA.Current.Value + deviations: return True return False def IsSafeToRemove(self, algorithm, symbol): '''Determines if it's safe to remove the associated symbol data''' # confirm the security isn't currently a member of any universe return not any([ kvp.Value.ContainsMember(symbol) for kvp in algorithm.UniverseManager ])