def rotationMatrixByQuaternion(rotation, order='xzy', world=False): return np.array( Quaternions.from_euler(np.radians(rotation), order=order, world=world))
def load(filename, start=None, end=None, order=None, world=False): """ Reads a BVH file and constructs an animation Parameters ---------- filename: str File to be opened start : int Optional Starting Frame end : int Optional Ending Frame order : str Optional Specifier for joint order. Given as string E.G 'xyz', 'zxy' world : bool If set to true euler angles are applied together in world space rather than local space Returns ------- (animation, joint_names, frametime) Tuple of loaded animation and joint names """ f = open(filename, "r") i = 0 active = -1 end_site = False names = [] orients = Quaternions.id(0) offsets = np.array([]).reshape((0, 3)) parents = np.array([], dtype=int) for line in f: if "HIERARCHY" in line: continue if "MOTION" in line: continue rmatch = re.match(r"ROOT (\w+)", line) if rmatch: names.append(rmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "{" in line: continue if "}" in line: if end_site: end_site = False else: active = parents[active] continue offmatch = re.match( r"\s*OFFSET\s+([\-\d\.e]+)\s+([\-\d\.e]+)\s+([\-\d\.e]+)", line) if offmatch: if not end_site: offsets[active] = np.array( [list(map(float, offmatch.groups()))]) continue chanmatch = re.match(r"\s*CHANNELS\s+(\d+)", line) if chanmatch: channels = int(chanmatch.group(1)) if order is None: channelis = 0 if channels == 3 else 3 channelie = 3 if channels == 3 else 6 parts = line.split()[2 + channelis:2 + channelie] if any([p not in channelmap for p in parts]): continue order = "".join([channelmap[p] for p in parts]) continue jmatch = re.match("\s*JOINT\s+(\w+)", line) if jmatch: names.append(jmatch.group(1)) offsets = np.append(offsets, np.array([[0, 0, 0]]), axis=0) orients.qs = np.append(orients.qs, np.array([[1, 0, 0, 0]]), axis=0) parents = np.append(parents, active) active = (len(parents) - 1) continue if "End Site" in line: end_site = True continue fmatch = re.match("\s*Frames:\s+(\d+)", line) if fmatch: if start and end: fnum = (end - start) - 1 else: fnum = int(fmatch.group(1)) jnum = len(parents) # result: [fnum, J, 3] positions = offsets[np.newaxis].repeat(fnum, axis=0) # result: [fnum, len(orients), 3] rotations = np.zeros((fnum, len(orients), 3)) continue fmatch = re.match("\s*Frame Time:\s+([\d\.]+)", line) if fmatch: frametime = float(fmatch.group(1)) continue if (start and end) and (i < start or i >= end - 1): i += 1 continue dmatch = line.strip().split() if dmatch: data_block = np.array(list(map(float, dmatch))) N = len(parents) fi = i - start if start else i if channels == 3: # This should be root positions[0:1] & all rotations positions[fi, 0:1] = data_block[0:3] rotations[fi, :] = data_block[3:].reshape(N, 3) elif channels == 6: data_block = data_block.reshape(N, 6) # fill in all positions positions[fi, :] = data_block[:, 0:3] rotations[fi, :] = data_block[:, 3:6] elif channels == 9: positions[fi, 0] = data_block[0:3] data_block = data_block[3:].reshape(N - 1, 9) rotations[fi, 1:] = data_block[:, 3:6] positions[fi, 1:] += data_block[:, 0:3] * data_block[:, 6:9] else: raise Exception("Too many channels! %i" % channels) i += 1 f.close() rotations = Quaternions.from_euler(np.radians(rotations), order=order, world=world) return (Animation(rotations, positions, orients, offsets, parents), names, frametime)
def __call__(self, descendants=None, gamma=1.0): self.descendants = descendants """ Calculate Masses """ if self.weights is None: self.weights = np.ones(self.animation.shape[1]) if self.weights_translate is None: self.weights_translate = np.ones(self.animation.shape[1]) """ Calculate Descendants """ if self.descendants is None: self.descendants = AnimationStructure.descendants_mask( self.animation.parents) self.tdescendants = np.eye(self.animation.shape[1]) + self.descendants self.first_descendants = self.descendants[:, np.array( list(self.targets.keys()) )].repeat(3, axis=0).astype(int) self.first_tdescendants = self.tdescendants[:, np.array( list(self.targets.keys( )))].repeat( 3, axis=0).astype(int) """ Calculate End Effectors """ self.endeff = np.array(list(self.targets.values())) self.endeff = np.swapaxes(self.endeff, 0, 1) if not self.references is None: self.second_descendants = self.descendants.repeat( 3, axis=0).astype(int) self.second_tdescendants = self.tdescendants.repeat( 3, axis=0).astype(int) self.second_targets = dict([ (i, self.references[:, i]) for i in xrange(self.references.shape[1]) ]) nf = len(self.animation) nj = self.animation.shape[1] if not self.silent: gp = Animation.positions_global(self.animation) gp = gp[:, np.array(list(self.targets.keys()))] error = np.mean(np.sqrt(np.sum((self.endeff - gp)**2.0, axis=2))) print('[JacobianInverseKinematics] Start | Error: %f' % error) for i in range(self.iterations): """ Get Global Rotations & Positions """ gt = Animation.transforms_global(self.animation) gp = gt[:, :, :, 3] gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis] gr = Quaternions.from_transforms(gt) x = self.animation.rotations.euler().reshape(nf, -1) w = self.weights.repeat(3) if self.translate: x = np.hstack([x, self.animation.positions.reshape(nf, -1)]) w = np.hstack([w, self.weights_translate.repeat(3)]) """ Generate Jacobian """ if self.recalculate or i == 0: j = self.jacobian(x, gp, gr, self.targets, self.first_descendants, self.first_tdescendants) """ Update Variables """ l = self.damping * (1.0 / (w + 0.001)) d = (l * l) * np.eye(x.shape[1]) e = gamma * ( self.endeff.reshape(nf, -1) - gp[:, np.array(list(self.targets.keys()))].reshape(nf, -1)) x += np.array( list( map( lambda jf, ef: linalg.lu_solve( linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot(ef)), j, e))) """ Generate Secondary Jacobian """ if self.references is not None: ns = np.array( list( map( lambda jf: np.eye(x.shape[1]) - linalg.solve( jf.T.dot(jf) + d, jf.T.dot(jf)), j))) if self.recalculate or i == 0: j2 = self.jacobian(x, gp, gr, self.second_targets, self.second_descendants, self.second_tdescendants) e2 = self.secondary * (self.references.reshape(nf, -1) - gp.reshape(nf, -1)) x += np.array( list( map( lambda nsf, j2f, e2f: nsf.dot( linalg.lu_solve( linalg.lu_factor(j2f.T.dot(j2f) + d), j2f.T.dot(e2f))), ns, j2, e2))) """ Set Back Rotations / Translations """ self.animation.rotations = Quaternions.from_euler( x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True) if self.translate: self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3)) """ Generate Error """ if not self.silent: gp = Animation.positions_global(self.animation) gp = gp[:, np.array(list(self.targets.keys()))] error = np.mean(np.sum((self.endeff - gp)**2.0, axis=2)**0.5) print('[JacobianInverseKinematics] Iteration %i | Error: %f' % (i + 1, error))
def __call__(self, descendants=None, maxjoints=4, gamma=1.0, transpose=False): """ Calculate Masses """ if self.weights is None: self.weights = np.ones(self.animation.shape[1]) if self.weights_translate is None: self.weights_translate = np.ones(self.animation.shape[1]) nf = len(self.animation) nj = self.animation.shape[1] nv = self.goal.shape[1] weightids = np.argsort(-self.vweights, axis=1)[:, :maxjoints] weightvls = np.array( list(map(lambda w, i: w[i], self.vweights, weightids))) weightvls = weightvls / weightvls.sum(axis=1)[..., np.newaxis] if descendants is None: self.descendants = AnimationStructure.descendants_mask( self.animation.parents) else: self.descendants = descendants des_r = np.eye(nj) + self.descendants des_r = des_r[:, weightids].repeat(3, axis=0) des_t = np.eye(nj) + self.descendants des_t = des_t[:, weightids].repeat(3, axis=0) if not self.silent: curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints) error = np.mean(np.sqrt(np.sum((curr - self.goal)**2.0, axis=-1))) print('[ICP] Start | Error: %f' % error) for i in range(self.iterations): """ Get Global Rotations & Positions """ gt = Animation.transforms_global(self.animation) gp = gt[:, :, :, 3] gp = gp[:, :, :3] / gp[:, :, 3, np.newaxis] gr = Quaternions.from_transforms(gt) x = self.animation.rotations.euler().reshape(nf, -1) w = self.weights.repeat(3) if self.translate: x = np.hstack([x, self.animation.positions.reshape(nf, -1)]) w = np.hstack([w, self.weights_translate.repeat(3)]) """ Get Current State """ curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh, maxjoints=maxjoints) """ Find Cloest Points """ if self.find_closest: mapping = np.argmin((curr[:, :, np.newaxis] - self.goal[:, np.newaxis, :])**2.0, axis=2) e = gamma * (np.array( list(map(lambda g, m: g[m], self.goal, mapping))) - curr).reshape(nf, -1) else: e = gamma * (self.goal - curr).reshape(nf, -1) """ Generate Jacobian """ if self.recalculate or i == 0: j = self.jacobian(x, gp, gr, self.goal, weightvls, des_r, des_t) """ Update Variables """ l = self.damping * (1.0 / (w + 1e-10)) d = (l * l) * np.eye(x.shape[1]) if transpose: x += np.array(list(map(lambda jf, ef: jf.T.dot(ef), j, e))) else: x += np.array( list( map( lambda jf, ef: linalg.lu_solve( linalg.lu_factor(jf.T.dot(jf) + d), jf.T.dot( ef)), j, e))) """ Set Back Rotations / Translations """ self.animation.rotations = Quaternions.from_euler( x[:, :nj * 3].reshape((nf, nj, 3)), order='xyz', world=True) if self.translate: self.animation.positions = x[:, nj * 3:].reshape((nf, nj, 3)) if not self.silent: curr = Animation.skin(self.animation, self.rest, self.vweights, self.mesh) error = np.mean( np.sqrt(np.sum((curr - self.goal)**2.0, axis=-1))) print('[ICP] Iteration %i | Error: %f' % (i + 1, error))
def load_from_maya(root, start, end): """ Load Animation Object from Maya Joint Skeleton Parameters ---------- root : PyNode Root Joint of Maya Skeleton start, end : int, int Start and End frame index of Maya Animation Returns ------- animation : Animation Loaded animation from maya names : [str] Joint names from maya """ import pymel.core as pm original_time = pm.currentTime(q=True) pm.currentTime(start) """ Build Structure """ names, parents = AnimationStructure.load_from_maya(root) descendants = AnimationStructure.descendants_list(parents) orients = Quaternions.id(len(names)) offsets = np.array([pm.xform(j, q=True, translation=True) for j in names]) for j, name in enumerate(names): scale = pm.xform(pm.PyNode(name), q=True, scale=True, relative=True) if len(descendants[j]) == 0: continue offsets[descendants[j]] *= scale """ Load Animation """ eulers = np.zeros((end - start, len(names), 3)) positions = np.zeros((end - start, len(names), 3)) rotations = Quaternions.id((end - start, len(names))) for i in range(end - start): pm.currentTime(start + i + 1, u=True) scales = {} for j, name, parent in zip(range(len(names)), names, parents): node = pm.PyNode(name) if i == 0 and pm.hasAttr(node, 'jointOrient'): ort = node.getOrientation() orients[j] = Quaternions( np.array([ort[3], ort[0], ort[1], ort[2]])) if pm.hasAttr(node, 'rotate'): eulers[i, j] = np.radians(pm.xform(node, q=True, rotation=True)) if pm.hasAttr(node, 'translate'): positions[i, j] = pm.xform(node, q=True, translation=True) if pm.hasAttr(node, 'scale'): scales[j] = pm.xform(node, q=True, scale=True, relative=True) for j in scales: if len(descendants[j]) == 0: continue positions[i, descendants[j]] *= scales[j] positions[i, 0] = pm.xform(root, q=True, translation=True, worldSpace=True) rotations = orients[np.newaxis] * Quaternions.from_euler( eulers, order='xyz', world=True) """ Done """ pm.currentTime(original_time) return Animation(rotations, positions, orients, offsets, parents), names