예제 #1
0
    R = N - len(runs_edges)

    # expected value of R
    e_R = ((2.0 * m * n) / N) + 1

    # variance of R is _numer/_denom
    _numer = 2 * m * n * (2 * m * n - N)
    _denom = N ** 2 * (N - 1)

    # see Eq. 1 in Friedman 1979
    # W approaches a standard normal distribution
    W = (R - e_R) / np.sqrt(_numer/_denom)

    return W, R

data = read_prepare()
limithour = 6.0
dataspin = data[data['runtime'] < 3600.0*limithour]
datagood = data[data['runtime'] > 3600.0*limithour]

#dataspin = data[(data['runtime'] < 3600.0*13)*(data['runtime'] > 3600.0*12)]
#datagood = data[(data['runtime'] < 3600.0*14)*(data['runtime'] > 3600.0*13)]


droplabels = ['runtime', 'Hgt', 'P', 'T', 'RH', 'DWRxk', 'DWRkw']
dataspin.drop(droplabels, axis=1, inplace=True)
datagood.drop(droplabels, axis=1, inplace=True)

Nsamples = 5000
X = dataspin.values[random.sample(range(len(dataspin)), Nsamples),:]
Y = datagood.values[random.sample(range(len(datagood)), Nsamples),:]
예제 #2
0
@author: dori
"""
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from statistics import hist_and_plot
from READ import read_prepare
plt.close('all')

addlabel = ''
addlabel = 'run'
#addlabel = 'spin'
campaign = 'tripex'
hydroset = campaign + '_all_hydro_'
data = read_prepare(hydroset, maxhour=46.0, minhour=6.0)
lognorm = True

h, x, y = hist_and_plot(data,
                        'CFAD  X-band  SNR',
                        'Hgt',
                        'N10',
                        'SNR X-band [dBZ]',
                        'Height   [m]',
                        xlim=[-15, 70],
                        ylim=[0, 10000],
                        inverty=False,
                        savename='CFAD/CFAD_snrX_Hgt' + campaign + addlabel +
                        '.png',
                        lognorm=lognorm)
예제 #3
0
Vr = V[2, 0, :, :, 0, 0]
Vs = V[3, 0, :, :, 0, 0]
Vg = V[4, 0, :, :, 0, 0]
Vh = V[5, 0, :, :, 0, 0]

Sc = S[0, 0, :, :, 0, 0]
Si = S[1, 0, :, :, 0, 0]
Sr = S[2, 0, :, :, 0, 0]
Ss = S[3, 0, :, :, 0, 0]
Sg = S[4, 0, :, :, 0, 0]
Sh = S[5, 0, :, :, 0, 0]

campaign = 'tripex'
minhour = 6.0

pamtra = read_prepare(hydroset=campaign + '_all_hydro_', minhour=minhour)
pamtraTl0 = slice_data(pamtra, 'T', maxvalue=0)
lognormrule = True

#%% CFAD Sensitivity
xlim = [-60, 50]
ylim = [0, 12000]
h1, x1, y1 = hist_and_plot(pamtra,
                           'sensitivity cone X',
                           yvar='Hgt',
                           xvar='Z10',
                           xlabel='Zx   [dBZ]',
                           ylabel='Hgt   [m]',
                           xlim=xlim,
                           ylim=ylim,
                           lognorm=lognormrule,
예제 #4
0
Sr = S[2, 0, :, :, 0, 0]
Ss = S[3, 0, :, :, 0, 0]
Sg = S[4, 0, :, :, 0, 0]
Sh = S[5, 0, :, :, 0, 0]

campaign = 'tripex'
minhour = 6.0

hydroset = 'only_ice'
#hydroset = 'only_snow'
#hydroset = 'no_snow'
#hydroset = 'only_graupel_hail'
#hydroset = 'only_liquid'
#hydroset = 'all_hydro'

pamtra = read_prepare(hydroset=campaign + '_' + hydroset + '_',
                      minhour=minhour)
pamtraTl0 = slice_data(pamtra, 'T', maxvalue=0)

#%% CFAD Sensitivity
xlim = [-60, 50]
ylim = [0, 12000]
hist_and_plot(pamtra,
              'sensitivity cone X',
              yvar='Hgt',
              xvar='Z10',
              xlabel='Zx   [dBZ]',
              ylabel='Hgt   [m]',
              xlim=xlim,
              ylim=ylim,
              lognorm=True,
              savename='tripex/' + hydroset + '/pamtraCFAD_Zx_Hgt.png',