def runCapture(config, duration=None, video_file=None, nodetect=False, detect_end=False, upload_manager=None): """ Run capture and compression for the given time.given Arguments: config: [config object] Configuration read from the .config file Keyword arguments: duration: [float] Time in seconds to capture. None by default. video_file: [str] Path to the video file, if it was given as the video source. None by default. nodetect: [bool] If True, detection will not be performed. False by defualt. detect_end: [bool] If True, detection will be performed at the end of the night, when capture finishes. False by default. upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to the central server. None by default. """ global STOP_CAPTURE # Create a directory for captured files night_data_dir_name = str( config.stationID) + '_' + datetime.datetime.utcnow().strftime( '%Y%m%d_%H%M%S_%f') # Full path to the data directory night_data_dir = os.path.join(os.path.abspath(config.data_dir), config.captured_dir, night_data_dir_name) # Make a directory for the night mkdirP(night_data_dir) log.info('Data directory: ' + night_data_dir) # Load the default flat field image if it is available flat_struct = None if config.use_flat: # Check if the flat exists if os.path.exists(os.path.join(os.getcwd(), config.flat_file)): flat_struct = Image.loadFlat(os.getcwd(), config.flat_file) log.info('Loaded flat field image: ' + os.path.join(os.getcwd(), config.flat_file)) # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config) log.info('Initializing frame buffers...') ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2 ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower ### then usual. We are applying a dirty fix here where we just add an extra image row and column ### if such a memory chunk will be created. The compression is performed, and the image is cropped ### back to its original dimensions. array_pad = 0 # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding if (256 * config.width * config.height) % (512 * 1024) == 0: array_pad = 1 # Init arrays for parallel compression on 2 cores sharedArrayBase = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj()) sharedArray = sharedArray.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime = multiprocessing.Value('d', 0.0) sharedArrayBase2 = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj()) sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime2 = multiprocessing.Value('d', 0.0) log.info('Initializing frame buffers done!') # Check if the detection should be performed or not if nodetect: detector = None else: if detect_end: # Delay detection until the end of the night delay_detection = duration else: # Delay the detection for 2 minutes after capture start delay_detection = 120 # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=1, log=log, delay_start=delay_detection) detector.startPool() # Initialize buffered capture bc = BufferedCapture(sharedArray, startTime, sharedArray2, startTime2, config, video_file=video_file) # Initialize the live image viewer live_view = LiveViewer(window_name='Maxpixel') # Initialize compression compressor = Compressor(night_data_dir, sharedArray, startTime, sharedArray2, startTime2, config, detector=detector, live_view=live_view, flat_struct=flat_struct) # Start buffered capture bc.startCapture() # Start the compression compressor.start() # Capture until Ctrl+C is pressed wait(duration) # If capture was manually stopped, end capture if STOP_CAPTURE: log.info('Ending capture...') # Stop the capture log.debug('Stopping capture...') bc.stopCapture() log.debug('Capture stopped') dropped_frames = bc.dropped_frames log.info('Total number of dropped frames: ' + str(dropped_frames)) # Stop the compressor log.debug('Stopping compression...') detector, live_view = compressor.stop() log.debug('Compression stopped') # Stop the live viewer log.debug('Stopping live viewer...') live_view.stop() del live_view log.debug('Live view stopped') # Init data lists star_list = [] meteor_list = [] ff_detected = [] # If detection should be performed if not nodetect: log.info('Finishing up the detection, ' + str(detector.input_queue.qsize()) + ' files to process...') # Reset the Ctrl+C to KeyboardInterrupt resetSIGINT() try: # If there are some more files to process, process them on more cores if detector.input_queue.qsize() > 0: # Let the detector use all cores, but leave 1 free available_cores = multiprocessing.cpu_count() - 1 if available_cores > 1: log.info('Running the detection on {:d} cores...'.format( available_cores)) # Start the detector detector.updateCoreNumber(cores=available_cores) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') except KeyboardInterrupt: log.info('Ctrl + C pressed, exiting...') if upload_manager is not None: # Stop the upload manager if upload_manager.is_alive(): log.debug('Closing upload manager...') upload_manager.stop() del upload_manager # Terminate the detector if detector is not None: del detector sys.exit() # Set the Ctrl+C back to 'soft' program kill setSIGINT() ### SAVE DETECTIONS TO FILE log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() # Remove all 'None' results, which were errors detection_results = [ res for res in detection_results if res is not None ] # Count the number of detected meteors meteors_num = 0 for _, _, meteor_data in detection_results: for meteor in meteor_data: meteors_num += 1 log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.') # Save the detections to a file for ff_name, star_data, meteor_data in detection_results: x2, y2, background, intensity = star_data # Skip if no stars were found if not x2: continue # Construct the table of the star parameters star_data = zip(x2, y2, background, intensity) # Add star info to the star list star_list.append([ff_name, star_data]) # Handle the detected meteors meteor_No = 1 for meteor in meteor_data: rho, theta, centroids = meteor # Append to the results list meteor_list.append([ff_name, meteor_No, rho, theta, centroids]) meteor_No += 1 # Add the FF file to the archive list if a meteor was detected on it if meteor_data: ff_detected.append(ff_name) # Generate the name for the CALSTARS file calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \ + os.path.basename(night_data_dir) + '.txt' # Write detected stars to the CALSTARS file CALSTARS.writeCALSTARS(star_list, night_data_dir, calstars_name, config.stationID, config.height, \ config.width) # Generate FTPdetectinfo file name ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename( night_data_dir) + '.txt' # Write FTPdetectinfo file FTPdetectinfo.writeFTPdetectinfo(meteor_list, night_data_dir, ftpdetectinfo_name, night_data_dir, \ config.stationID, config.fps) # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config) # Run calibration check and auto astrometry refinement if platepar is not None: # Read in the CALSTARS file calstars_list = CALSTARS.readCALSTARS(night_data_dir, calstars_name) # Run astrometry check and refinement platepar, fit_status = autoCheckFit(config, platepar, calstars_list) # If the fit was sucessful, apply the astrometry to detected meteors if fit_status: log.info('Astrometric calibration SUCCESSFUL!') # Save the refined platepar to the night directory and as default platepar.write(os.path.join(night_data_dir, config.platepar_name), fmt=platepar_fmt) platepar.write(platepar_path, fmt=platepar_fmt) else: log.info( 'Astrometric calibration FAILED!, Using old platepar for calibration...' ) # Calculate astrometry for meteor detections applyAstrometryFTPdetectinfo(night_data_dir, ftpdetectinfo_name, platepar_path) log.info('Plotting field sums...') # Plot field sums to a graph plotFieldsums(night_data_dir, config) # Archive all fieldsums to one archive archiveFieldsums(night_data_dir) # List for any extra files which will be copied to the night archive directory. Full paths have to be # given extra_files = [] log.info('Making a flat...') # Make a new flat field flat_img = makeFlat(night_data_dir, config) # If making flat was sucessfull, save it if flat_img is not None: # Save the flat in the root directory, to keep the operational flat updated scipy.misc.imsave(config.flat_file, flat_img) flat_path = os.path.join(os.getcwd(), config.flat_file) log.info('Flat saved to: ' + flat_path) # Copy the flat to the night's directory as well extra_files.append(flat_path) else: log.info('Making flat image FAILED!') ### Add extra files to archive # Add the platepar to the archive if it exists if os.path.exists(platepar_path): extra_files.append(platepar_path) # Add the config file to the archive too extra_files.append(os.path.join(os.getcwd(), '.config')) ### ### night_archive_dir = os.path.join(os.path.abspath(config.data_dir), config.archived_dir, night_data_dir_name) log.info('Archiving detections to ' + night_archive_dir) # Archive the detections archive_name = archiveDetections(night_data_dir, night_archive_dir, ff_detected, config, \ extra_files=extra_files) # Put the archive up for upload if upload_manager is not None: log.info('Adding file on upload list: ' + archive_name) upload_manager.addFiles([archive_name]) # If capture was manually stopped, end program if STOP_CAPTURE: log.info('Ending program') # Stop the upload manager if upload_manager is not None: if upload_manager.is_alive(): upload_manager.stop() log.info('Closing upload manager...') sys.exit()
# This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from RMS.Compression import Compressor import RMS.ConfigReader as cr import numpy as np from matplotlib import pyplot as plt if __name__ == "__main__": config = cr.parse(".config") frames = np.empty((256, 576, 720), np.uint8) for i in range(256): frames[i] = np.random.normal(128, 2, (576, 720)) comp = Compressor(None, None, None, None, None, config) compressed, field_intensities = comp.compress(frames) plt.hist(compressed[1].ravel(), 256, [0, 256]) plt.xlim((0, 255)) plt.title('Randomness histogram') plt.xlabel('Frame') plt.ylabel('Random value count') plt.show()
def runCapture(config, duration=None, video_file=None, nodetect=False, detect_end=False, \ upload_manager=None, resume_capture=False): """ Run capture and compression for the given time.given Arguments: config: [config object] Configuration read from the .config file. Keyword arguments: duration: [float] Time in seconds to capture. None by default. video_file: [str] Path to the video file, if it was given as the video source. None by default. nodetect: [bool] If True, detection will not be performed. False by defualt. detect_end: [bool] If True, detection will be performed at the end of the night, when capture finishes. False by default. upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to the central server. None by default. resume_capture: [bool] Resume capture in the last data directory in CapturedFiles. Return: night_archive_dir: [str] Path to the archive folder of the processed night. """ global STOP_CAPTURE # Check if resuming capture to the last capture directory night_data_dir_name = None if resume_capture: log.info("Resuming capture in the last capture directory...") # Find the latest capture directory capturedfiles_path = os.path.join(os.path.abspath(config.data_dir), config.captured_dir) most_recent_dir_time = 0 for dir_name in sorted(os.listdir(capturedfiles_path)): dir_path_check = os.path.join(capturedfiles_path, dir_name) # Check it's a directory if os.path.isdir(dir_path_check): # Check if it starts with the correct station code if dir_name.startswith(str(config.stationID)): dir_mod_time = os.path.getmtime(dir_path_check) # Check that it is the most recent directory if (night_data_dir_name is None) or (dir_mod_time > most_recent_dir_time): night_data_dir_name = dir_name night_data_dir = dir_path_check most_recent_dir_time = dir_mod_time if night_data_dir_name is None: log.info( "Previous capture directory could not be found! Creating a new one..." ) else: log.info("Previous capture directory found: {:s}".format( night_data_dir)) # Resume run is finished now, reset resume flag cml_args.resume = False # Make a name for the capture data directory if night_data_dir_name is None: # Create a directory for captured files night_data_dir_name = str(config.stationID) + '_' \ + datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S_%f') # Full path to the data directory night_data_dir = os.path.join(os.path.abspath(config.data_dir), config.captured_dir, \ night_data_dir_name) # Wait before the capture starts if a time has been given if (not resume_capture) and (video_file is None): log.info("Waiting {:d} seconds before capture start...".format( int(config.capture_wait_seconds))) time.sleep(config.capture_wait_seconds) # Add a note about Patreon supporters print("################################################################") print("Thanks to our Patreon supporters in the 'Dinosaur Killer' class:") print("- Myron Valenta") print("https://www.patreon.com/globalmeteornetwork") print("\n\n\n" \ + " .:' .:' .:' .:' \n"\ + " _.::' _.::' _.::' _.::' \n"\ + " (_.' (_.' (_.' (_.' \n"\ + " __ \n"\ + " / _) \n"\ + "_\\/_ _/\\/\\/\\_/ / _\\/_ \n"\ + "/o\\ _| / //o\\ \n"\ + " | _| ( | ( | | \n"\ + "_|____ /__.-'|_|--|_| ______|__\n") print("################################################################") # Make a directory for the night mkdirP(night_data_dir) log.info('Data directory: ' + night_data_dir) # Copy the used config file to the capture directory if os.path.isfile(config.config_file_name): try: shutil.copy2(config.config_file_name, os.path.join(night_data_dir, ".config")) except: log.error("Cannot copy the config file to the capture directory!") # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config, night_data_dir) # If the platepar is not none, set the FOV from it if platepar is not None: config.fov_w = platepar.fov_h config.fov_h = platepar.fov_v log.info('Initializing frame buffers...') ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2 ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower ### then usual. We are applying a dirty fix here where we just add an extra image row and column ### if such a memory chunk will be created. The compression is performed, and the image is cropped ### back to its original dimensions. array_pad = 0 # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding if (256 * config.width * config.height) % (512 * 1024) == 0: array_pad = 1 # Init arrays for parallel compression on 2 cores sharedArrayBase = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj()) sharedArray = sharedArray.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime = multiprocessing.Value('d', 0.0) sharedArrayBase2 = multiprocessing.Array( ctypes.c_uint8, 256 * (config.width + array_pad) * (config.height + array_pad)) sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj()) sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime2 = multiprocessing.Value('d', 0.0) log.info('Initializing frame buffers done!') # Check if the detection should be performed or not if nodetect: detector = None else: if detect_end: # Delay detection until the end of the night delay_detection = duration else: # Delay the detection for 2 minutes after capture start (helps stability) delay_detection = 120 # Add an additional postprocessing delay delay_detection += config.postprocess_delay # Set a flag file to indicate that previous files are being loaded (if any) capture_resume_file_path = os.path.join( config.data_dir, config.capture_resume_flag_file) with open(capture_resume_file_path, 'w') as f: pass # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=1, log=log, delay_start=delay_detection, \ backup_dir=night_data_dir) detector.startPool() # If the capture is being resumed into the directory, load all previously saved FF files if resume_capture: # Load all preocessed FF files for i, ff_name in enumerate(sorted(os.listdir(night_data_dir))): # Every 50 files loaded, update the flag file if i % 50 == 0: with open(capture_resume_file_path, 'a') as f: f.write("{:d}\n".format(i)) # Check if the file is a valid FF files ff_path = os.path.join(night_data_dir, ff_name) if os.path.isfile(ff_path) and (str( config.stationID) in ff_name) and validFFName(ff_name): # Add the FF file to the detector detector.addJob([night_data_dir, ff_name, config], wait_time=0.005) log.info( "Added existing FF files for detection: {:s}".format( ff_name)) # Remove the flag file if os.path.isfile(capture_resume_file_path): try: os.remove(capture_resume_file_path) except: log.error("There was an error during removing the capture resume flag file: " \ + capture_resume_file_path) # Initialize buffered capture bc = BufferedCapture(sharedArray, startTime, sharedArray2, startTime2, config, video_file=video_file) # Initialize the live image viewer if config.live_maxpixel_enable: # Enable showing the live JPG config.live_jpg = True live_jpg_path = os.path.join(config.data_dir, 'live.jpg') live_view = LiveViewer(live_jpg_path, image=True, slideshow=False, banner_text="Live") live_view.start() else: live_view = None # Initialize compression compressor = Compressor(night_data_dir, sharedArray, startTime, sharedArray2, startTime2, config, detector=detector) # Start buffered capture bc.startCapture() # Init and start the compression compressor.start() # Capture until Ctrl+C is pressed wait(duration, compressor) # If capture was manually stopped, end capture if STOP_CAPTURE: log.info('Ending capture...') # Stop the capture log.debug('Stopping capture...') bc.stopCapture() log.debug('Capture stopped') dropped_frames = bc.dropped_frames log.info('Total number of late or dropped frames: ' + str(dropped_frames)) # Stop the compressor log.debug('Stopping compression...') detector = compressor.stop() # Free shared memory after the compressor is done try: log.debug('Freeing frame buffers...') del sharedArrayBase del sharedArray del sharedArrayBase2 del sharedArray2 except Exception as e: log.debug('Freeing frame buffers failed with error:' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) log.debug('Compression stopped') if live_view is not None: # Stop the live viewer log.debug('Stopping live viewer...') live_view.stop() live_view.join() del live_view live_view = None log.debug('Live view stopped') # If detection should be performed if not nodetect: try: log.info('Finishing up the detection, ' + str(detector.input_queue.qsize()) \ + ' files to process...') except: print( 'Finishing up the detection... error when getting input queue size!' ) # Reset the Ctrl+C to KeyboardInterrupt resetSIGINT() try: # If there are some more files to process, process them on more cores if detector.input_queue.qsize() > 0: # Let the detector use all cores, but leave 2 free available_cores = multiprocessing.cpu_count() - 2 if available_cores > 1: log.info('Running the detection on {:d} cores...'.format( available_cores)) # Start the detector detector.updateCoreNumber(cores=available_cores) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') except KeyboardInterrupt: log.info('Ctrl + C pressed, exiting...') if upload_manager is not None: # Stop the upload manager if upload_manager.is_alive(): log.debug('Closing upload manager...') upload_manager.stop() del upload_manager # Terminate the detector if detector is not None: del detector sys.exit() # Set the Ctrl+C back to 'soft' program kill setSIGINT() ### SAVE DETECTIONS TO FILE log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() else: detection_results = [] # Save detection to disk and archive detection night_archive_dir, archive_name, _ = processNight(night_data_dir, config, \ detection_results=detection_results, nodetect=nodetect) # Put the archive up for upload if upload_manager is not None: log.info('Adding file to upload list: ' + archive_name) upload_manager.addFiles([archive_name]) log.info('File added...') # Delay the upload, if the delay is given upload_manager.delayNextUpload(delay=60 * config.upload_delay) # Delete detector backup files if detector is not None: detector.deleteBackupFiles() # If the capture was run for a limited time, run the upload right away if (duration is not None) and (upload_manager is not None): log.info('Uploading data before exiting...') upload_manager.uploadData() # Run the external script runExternalScript(night_data_dir, night_archive_dir, config) # If capture was manually stopped, end program if STOP_CAPTURE: log.info('Ending program') # Stop the upload manager if upload_manager is not None: if upload_manager.is_alive(): upload_manager.stop() log.info('Closing upload manager...') sys.exit() return night_archive_dir
## SAVE the frames to disk with open(os.path.join(dir_path, pickle_file), 'w') as f: pickle.dump(frames, f) ### # ## Load the frames from disk # with open(os.path.join(dir_path, pickle_file), 'r') as f: # frames = pickle.load(f) # ### # # Show individual frames # for i in range(120, 128): # plt.imshow(frames[i]) # plt.show() comp = Compressor(dir_path, None, None, None, None, config) print('Running compression...') t1 = time.time() # Run the compression compressed, field_intensities = comp.compress(frames) print('Time for compression', time.time() - t1) t1 = time.time() # Save FF file comp.saveFF(compressed, 0, 0) # Save the extracted intensitites per every field
def runCapture(config, duration=None, video_file=None, nodetect=False, detect_end=False, upload_manager=None): """ Run capture and compression for the given time.given Arguments: config: [config object] Configuration read from the .config file Keyword arguments: duration: [float] Time in seconds to capture. None by default. video_file: [str] Path to the video file, if it was given as the video source. None by default. nodetect: [bool] If True, detection will not be performed. False by defualt. detect_end: [bool] If True, detection will be performed at the end of the night, when capture finishes. False by default. upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to the central server. None by default. Return: night_archive_dir: [str] Path to the archive folder of the processed night. """ global STOP_CAPTURE # Create a directory for captured files night_data_dir_name = str(config.stationID) + '_' + datetime.datetime.utcnow().strftime('%Y%m%d_%H%M%S_%f') # Full path to the data directory night_data_dir = os.path.join(os.path.abspath(config.data_dir), config.captured_dir, night_data_dir_name) # Make a directory for the night mkdirP(night_data_dir) log.info('Data directory: ' + night_data_dir) # Get the platepar file platepar, platepar_path, platepar_fmt = getPlatepar(config, night_data_dir) log.info('Initializing frame buffers...') ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2 ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower ### then usual. We are applying a dirty fix here where we just add an extra image row and column ### if such a memory chunk will be created. The compression is performed, and the image is cropped ### back to its original dimensions. array_pad = 0 # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding if (256*config.width*config.height)%(512*1024) == 0: array_pad = 1 # Init arrays for parallel compression on 2 cores sharedArrayBase = multiprocessing.Array(ctypes.c_uint8, 256*(config.width + array_pad)*(config.height + array_pad)) sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj()) sharedArray = sharedArray.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime = multiprocessing.Value('d', 0.0) sharedArrayBase2 = multiprocessing.Array(ctypes.c_uint8, 256*(config.width + array_pad)*(config.height + array_pad)) sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj()) sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad), (config.width + array_pad)) startTime2 = multiprocessing.Value('d', 0.0) log.info('Initializing frame buffers done!') # Check if the detection should be performed or not if nodetect: detector = None else: if detect_end: # Delay detection until the end of the night delay_detection = duration else: # Delay the detection for 2 minutes after capture start delay_detection = 120 # Initialize the detector detector = QueuedPool(detectStarsAndMeteors, cores=1, log=log, delay_start=delay_detection, \ backup_dir=night_data_dir) detector.startPool() # Initialize buffered capture bc = BufferedCapture(sharedArray, startTime, sharedArray2, startTime2, config, video_file=video_file) # Initialize the live image viewer if config.live_maxpixel_enable: live_view = LiveViewer(night_data_dir, slideshow=False, banner_text="Live") live_view.start() else: live_view = None # Initialize compression compressor = Compressor(night_data_dir, sharedArray, startTime, sharedArray2, startTime2, config, detector=detector) # Start buffered capture bc.startCapture() # Init and start the compression compressor.start() # Capture until Ctrl+C is pressed wait(duration, compressor) # If capture was manually stopped, end capture if STOP_CAPTURE: log.info('Ending capture...') # Stop the capture log.debug('Stopping capture...') bc.stopCapture() log.debug('Capture stopped') dropped_frames = bc.dropped_frames log.info('Total number of late or dropped frames: ' + str(dropped_frames)) # Stop the compressor log.debug('Stopping compression...') detector = compressor.stop() # Free shared memory after the compressor is done try: log.debug('Freeing frame buffers...') del sharedArrayBase del sharedArray del sharedArrayBase2 del sharedArray2 except Exception as e: log.debug('Freeing frame buffers failed with error:' + repr(e)) log.debug(repr(traceback.format_exception(*sys.exc_info()))) log.debug('Compression stopped') if live_view is not None: # Stop the live viewer log.debug('Stopping live viewer...') live_view.stop() live_view.join() del live_view live_view = None log.debug('Live view stopped') # If detection should be performed if not nodetect: try: log.info('Finishing up the detection, ' + str(detector.input_queue.qsize()) \ + ' files to process...') except: print('Finishing up the detection... error when getting input queue size!') # Reset the Ctrl+C to KeyboardInterrupt resetSIGINT() try: # If there are some more files to process, process them on more cores if detector.input_queue.qsize() > 0: # Let the detector use all cores, but leave 2 free available_cores = multiprocessing.cpu_count() - 2 if available_cores > 1: log.info('Running the detection on {:d} cores...'.format(available_cores)) # Start the detector detector.updateCoreNumber(cores=available_cores) log.info('Waiting for the detection to finish...') # Wait for the detector to finish and close it detector.closePool() log.info('Detection finished!') except KeyboardInterrupt: log.info('Ctrl + C pressed, exiting...') if upload_manager is not None: # Stop the upload manager if upload_manager.is_alive(): log.debug('Closing upload manager...') upload_manager.stop() del upload_manager # Terminate the detector if detector is not None: del detector sys.exit() # Set the Ctrl+C back to 'soft' program kill setSIGINT() ### SAVE DETECTIONS TO FILE log.info('Collecting results...') # Get the detection results from the queue detection_results = detector.getResults() else: detection_results = [] # Save detection to disk and archive detection night_archive_dir, archive_name, _ = processNight(night_data_dir, config, \ detection_results=detection_results, nodetect=nodetect) # Put the archive up for upload if upload_manager is not None: log.info('Adding file to upload list: ' + archive_name) upload_manager.addFiles([archive_name]) log.info('File added...') # Delete detector backup files if detector is not None: detector.deleteBackupFiles() # If the capture was run for a limited time, run the upload right away if (duration is not None) and (upload_manager is not None): log.info('Uploading data before exiting...') upload_manager.uploadData() # Run the external script runExternalScript(night_data_dir, night_archive_dir, config) # If capture was manually stopped, end program if STOP_CAPTURE: log.info('Ending program') # Stop the upload manager if upload_manager is not None: if upload_manager.is_alive(): upload_manager.stop() log.info('Closing upload manager...') sys.exit() return night_archive_dir
# You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Timings of compression algorithm with various cases. """ from __future__ import print_function, division, absolute_import from RMS.Compression import Compressor import RMS.ConfigReader as cr import numpy as np import time import sys config = cr.parse(".config") comp = Compressor(None, None, None, None, None, config) # IMAGE SIZE WIDTH = 1280 HEIGHT = 720 def timing(img): t = time.time() comp.compress(img) return time.time() - t def create(f): arr = np.empty((256, HEIGHT, WIDTH), np.uint8)
# This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from RMS.Compression import Compressor import RMS.ConfigReader as cr import numpy as np from matplotlib import pyplot as plt if __name__ == "__main__": config = cr.parse(".config") frames = np.empty((256, 576, 720), np.uint8) for i in range(256): frames[i] = np.random.normal(128, 2, (576, 720)) comp = Compressor(None, None, None, None, None, config) compressed, field_intensities = comp.compress(frames) plt.hist(compressed[1].ravel(), 256, [0,256]) plt.xlim((0, 255)) plt.title('Randomness histogram') plt.xlabel('Frame') plt.ylabel('Random value count') plt.show()
pickle.dump(frames, f) ### # ## Load the frames from disk # with open(os.path.join(dir_path, pickle_file), 'r') as f: # frames = pickle.load(f) # ### # # Show individual frames # for i in range(120, 128): # plt.imshow(frames[i]) # plt.show() comp = Compressor(dir_path, None, None, None, None, config) print('Running compression...') t1 = time.time() # Run the compression compressed, field_intensities = comp.compress(frames) print('Time for compression', time.time() - t1) t1 = time.time() # Save FF file comp.saveFF(compressed, 0, 0) # Save the extracted intensitites per every field