def run_rmsynth(data, polyOrd=3, phiMax_radm2=None, dPhi_radm2=None, nSamples=10.0, weightType="variance", fitRMSF=False, noStokesI=False, phiNoise_radm2=1e6, nBits=32, showPlots=False, debug=False, verbose=False, log=print, units='Jy/beam', e_num=1): """Run RM synthesis on 1D data. Args: data (list): Contains frequency and polarization data as either: [freq_Hz, I, Q, U, dI, dQ, dU] freq_Hz (array_like): Frequency of each channel in Hz. I (array_like): Stokes I intensity in each channel. Q (array_like): Stokes Q intensity in each channel. U (array_like): Stokes U intensity in each channel. dI (array_like): Error in Stokes I intensity in each channel. dQ (array_like): Error in Stokes Q intensity in each channel. dU (array_like): Error in Stokes U intensity in each channel. or [freq_Hz, q, u, dq, du] freq_Hz (array_like): Frequency of each channel in Hz. q (array_like): Fractional Stokes Q intensity (Q/I) in each channel. u (array_like): Fractional Stokes U intensity (U/I) in each channel. dq (array_like): Error in fractional Stokes Q intensity in each channel. du (array_like): Error in fractional Stokes U intensity in each channel. Kwargs: polyOrd (int): Order of polynomial to fit to Stokes I spectrum. phiMax_radm2 (float): Maximum absolute Faraday depth (rad/m^2). dPhi_radm2 (float): Faraday depth channel size (rad/m^2). nSamples (float): Number of samples across the RMSF. weightType (str): Can be "variance" or "uniform" "variance" -- Weight by uncertainty in Q and U. "uniform" -- Weight uniformly (i.e. with 1s) fitRMSF (bool): Fit a Gaussian to the RMSF? noStokesI (bool: Is Stokes I data provided? phiNoise_radm2 (float): ???? nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? debug (bool): Turn on debugging messages & plots? verbose (bool): Verbosity. log (function): Which logging function to use. units (str): Units of data. Returns: mDict (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2 * nBits) # freq_Hz, I, Q, U, dI, dQ, dU try: if verbose: log("> Trying [freq_Hz, I, Q, U, dI, dQ, dU]", end=' ') (freqArr_Hz, IArr, QArr, UArr, dIArr, dQArr, dUArr) = data if verbose: log("... success.") except Exception: if verbose: log("...failed.") # freq_Hz, q, u, dq, du try: if verbose: log("> Trying [freq_Hz, q, u, dq, du]", end=' ') (freqArr_Hz, QArr, UArr, dQArr, dUArr) = data if verbose: log("... success.") noStokesI = True except Exception: if verbose: log("...failed.") if debug: log(traceback.format_exc()) sys.exit() if verbose: log("Successfully read in the Stokes spectra.") # If no Stokes I present, create a dummy spectrum = unity if noStokesI: if verbose: log("Warn: no Stokes I data in use.") IArr = np.ones_like(QArr) dIArr = np.zeros_like(QArr) # Convert to GHz for convenience freqArr_GHz = freqArr_Hz / 1e9 dQUArr = (dQArr + dUArr) / 2.0 # Fit the Stokes I spectrum and create the fractional spectra IModArr, qArr, uArr, dqArr, duArr, fitDict = \ create_frac_spectra(freqArr = freqArr_GHz, IArr = IArr, QArr = QArr, UArr = UArr, dIArr = dIArr, dQArr = dQArr, dUArr = dUArr, polyOrd = polyOrd, verbose = True, debug = debug) # Plot the data and the Stokes I model fit if showPlots: if verbose: log("Plotting the input data and spectral index fit.") freqHirArr_Hz = np.linspace(freqArr_Hz[0], freqArr_Hz[-1], 10000) IModHirArr = poly5(fitDict["p"])(freqHirArr_Hz / 1e9) specFig = plt.figure(figsize=(12.0, 8)) plot_Ipqu_spectra_fig(freqArr_Hz=freqArr_Hz, IArr=IArr, qArr=qArr, uArr=uArr, dIArr=dIArr, dqArr=dqArr, duArr=duArr, freqHirArr_Hz=freqHirArr_Hz, IModArr=IModHirArr, fig=specFig, units=units) # Use the custom navigation toolbar (does not work on Mac OS X) # try: # specFig.canvas.toolbar.pack_forget() # CustomNavbar(specFig.canvas, specFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # if not plt.isinteractive(): # specFig.show() # DEBUG (plot the Q, U and average RMS spectrum) if debug: rmsFig = plt.figure(figsize=(12.0, 8)) ax = rmsFig.add_subplot(111) ax.plot(freqArr_Hz / 1e9, dQUArr, marker='o', color='k', lw=0.5, label='rms <QU>') ax.plot(freqArr_Hz / 1e9, dQArr, marker='o', color='b', lw=0.5, label='rms Q') ax.plot(freqArr_Hz / 1e9, dUArr, marker='o', color='r', lw=0.5, label='rms U') xRange = (np.nanmax(freqArr_Hz) - np.nanmin(freqArr_Hz)) / 1e9 ax.set_xlim( np.min(freqArr_Hz) / 1e9 - xRange * 0.05, np.max(freqArr_Hz) / 1e9 + xRange * 0.05) ax.set_xlabel('$\\nu$ (GHz)') ax.set_ylabel('RMS ' + units) ax.set_title("RMS noise in Stokes Q, U and <Q,U> spectra") # rmsFig.show() #-------------------------------------------------------------------------# # Calculate some wavelength parameters lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) dFreq_Hz = np.nanmin(np.abs(np.diff(freqArr_Hz))) lambdaSqRange_m2 = (np.nanmax(lambdaSqArr_m2) - np.nanmin(lambdaSqArr_m2)) dLambdaSqMin_m2 = np.nanmin(np.abs(np.diff(lambdaSqArr_m2))) dLambdaSqMax_m2 = np.nanmax(np.abs(np.diff(lambdaSqArr_m2))) # Set the Faraday depth range fwhmRMSF_radm2 = 2.0 * m.sqrt(3.0) / lambdaSqRange_m2 if dPhi_radm2 is None: dPhi_radm2 = fwhmRMSF_radm2 / nSamples if phiMax_radm2 is None: phiMax_radm2 = m.sqrt(3.0) / dLambdaSqMax_m2 phiMax_radm2 = max(phiMax_radm2, 600.0) # Force the minimum phiMax # Faraday depth sampling. Zero always centred on middle channel nChanRM = int(round(abs((phiMax_radm2 - 0.0) / dPhi_radm2)) * 2.0 + 1.0) startPhi_radm2 = -(nChanRM - 1.0) * dPhi_radm2 / 2.0 stopPhi_radm2 = +(nChanRM - 1.0) * dPhi_radm2 / 2.0 phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) phiArr_radm2 = phiArr_radm2.astype(dtFloat) if verbose: log("PhiArr = %.2f to %.2f by %.2f (%d chans)." % (phiArr_radm2[0], phiArr_radm2[-1], float(dPhi_radm2), nChanRM)) # Calculate the weighting as 1/sigma^2 or all 1s (uniform) if weightType == "variance": weightArr = 1.0 / np.power(dQUArr, 2.0) else: weightType = "uniform" weightArr = np.ones(freqArr_Hz.shape, dtype=dtFloat) if verbose: log("Weight type is '%s'." % weightType) startTime = time.time() # Perform RM-synthesis on the spectrum dirtyFDF, lam0Sq_m2, mylist = do_rmsynth_planes( dataQ=qArr, dataU=uArr, lambdaSqArr_m2=lambdaSqArr_m2, phiArr_radm2=phiArr_radm2, weightArr=weightArr, nBits=nBits, verbose=verbose, log=log, e_num=e_num) # Calculate the Rotation Measure Spread Function RMSFArr, phi2Arr_radm2, fwhmRMSFArr, fitStatArr = \ get_rmsf_planes(lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr = weightArr, mskArr = ~np.isfinite(qArr), lam0Sq_m2 = lam0Sq_m2, double = True, fitRMSF = fitRMSF, fitRMSFreal = False, nBits = nBits, verbose = verbose, log = log) fwhmRMSF = float(fwhmRMSFArr) # ALTERNATE RM-SYNTHESIS CODE --------------------------------------------# #dirtyFDF, [phi2Arr_radm2, RMSFArr], lam0Sq_m2, fwhmRMSF = \ # do_rmsynth(qArr, uArr, lambdaSqArr_m2, phiArr_radm2, weightArr) #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-synthesis completed in %.2f seconds." % cputime) # Determine the Stokes I value at lam0Sq_m2 from the Stokes I model # Multiply the dirty FDF by Ifreq0 to recover the PI freq0_Hz = C / m.sqrt(lam0Sq_m2) Ifreq0 = poly5(fitDict["p"])(freq0_Hz / 1e9) dirtyFDF *= (Ifreq0 ) # FDF is in fracpol units initially, convert back to flux # Calculate the theoretical noise in the FDF !!Old formula only works for wariance weights! weightArr = np.where(np.isnan(weightArr), 0.0, weightArr) dFDFth = np.sqrt( np.sum(weightArr**2 * np.nan_to_num(dQUArr)**2) / (np.sum(weightArr))**2) # Measure the parameters of the dirty FDF # Use the theoretical noise to calculate uncertainties mDict = measure_FDF_parms(FDF=dirtyFDF, phiArr=phiArr_radm2, fwhmRMSF=fwhmRMSF, dFDF=dFDFth, lamSqArr_m2=lambdaSqArr_m2, lam0Sq=lam0Sq_m2) mDict["Ifreq0"] = toscalar(Ifreq0) mDict["polyCoeffs"] = ",".join([str(x) for x in fitDict["p"]]) mDict["IfitStat"] = fitDict["fitStatus"] mDict["IfitChiSqRed"] = fitDict["chiSqRed"] mDict["lam0Sq_m2"] = toscalar(lam0Sq_m2) mDict["freq0_Hz"] = toscalar(freq0_Hz) mDict["fwhmRMSF"] = toscalar(fwhmRMSF) mDict["dQU"] = toscalar(nanmedian(dQUArr)) mDict["dFDFth"] = toscalar(dFDFth) mDict["units"] = units mDict['dQUArr'] = dQUArr if fitDict["fitStatus"] >= 128: log("WARNING: Stokes I model contains negative values!") elif fitDict["fitStatus"] >= 64: log("Caution: Stokes I model has low signal-to-noise.") #Add information on nature of channels: good_channels = np.where(np.logical_and(weightArr != 0, np.isfinite(qArr)))[0] mDict["min_freq"] = float(np.min(freqArr_Hz[good_channels])) mDict["max_freq"] = float(np.max(freqArr_Hz[good_channels])) mDict["N_channels"] = good_channels.size mDict["median_channel_width"] = float(np.median(np.diff(freqArr_Hz))) # Measure the complexity of the q and u spectra mDict["fracPol"] = mDict["ampPeakPIfit"] / (Ifreq0) mD, pD = measure_qu_complexity(freqArr_Hz=freqArr_Hz, qArr=qArr, uArr=uArr, dqArr=dqArr, duArr=duArr, fracPol=mDict["fracPol"], psi0_deg=mDict["polAngle0Fit_deg"], RM_radm2=mDict["phiPeakPIfit_rm2"]) mDict.update(mD) # Debugging plots for spectral complexity measure if debug: tmpFig = plot_complexity_fig(xArr=pD["xArrQ"], qArr=pD["yArrQ"], dqArr=pD["dyArrQ"], sigmaAddqArr=pD["sigmaAddArrQ"], chiSqRedqArr=pD["chiSqRedArrQ"], probqArr=pD["probArrQ"], uArr=pD["yArrU"], duArr=pD["dyArrU"], sigmaAdduArr=pD["sigmaAddArrU"], chiSqReduArr=pD["chiSqRedArrU"], probuArr=pD["probArrU"], mDict=mDict) tmpFig.show() #add array dictionary aDict = dict() aDict["phiArr_radm2"] = phiArr_radm2 aDict["phi2Arr_radm2"] = phi2Arr_radm2 aDict["RMSFArr"] = RMSFArr aDict["freqArr_Hz"] = freqArr_Hz aDict["weightArr"] = weightArr aDict["dirtyFDF"] = dirtyFDF if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDict["freq0_Hz"] / 1e9)) log('I freq0 = %.4g %s' % (mDict["Ifreq0"], units)) log('Peak PI = %.4g (+/-%.4g) %s' % (mDict["ampPeakPIfit"], mDict["dAmpPeakPIfit"], units)) log('QU Noise = %.4g %s' % (mDict["dQU"], units)) log('FDF Noise (theory) = %.4g %s' % (mDict["dFDFth"], units)) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict["dFDFcorMAD"], units)) log('FDF Noise (rms) = %.4g %s' % (mDict["dFDFrms"], units)) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log('sigma_add(q) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddQ"], mDict["dSigmaAddPlusQ"], mDict["dSigmaAddMinusQ"])) log('sigma_add(u) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddU"], mDict["dSigmaAddPlusU"], mDict["dSigmaAddMinusU"])) log() log('-' * 80) myfig = plotmylist(mylist) plt.show() myfig.show() # Plot the RM Spread Function and dirty FDF if showPlots: fdfFig = plt.figure(figsize=(12.0, 8)) plot_rmsf_fdf_fig(phiArr=phiArr_radm2, FDF=dirtyFDF, phi2Arr=phi2Arr_radm2, RMSFArr=RMSFArr, fwhmRMSF=fwhmRMSF, vLine=mDict["phiPeakPIfit_rm2"], fig=fdfFig, units=units) # Use the custom navigation toolbar # try: # fdfFig.canvas.toolbar.pack_forget() # CustomNavbar(fdfFig.canvas, fdfFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # fdfFig.show() # Pause if plotting enabled if showPlots or debug: plt.show() # #if verbose: print "Press <RETURN> to exit ...", # input() return mDict, aDict, mylist
def run_rmclean(mDictS, aDict, cutoff, maxIter=1000, gain=0.1, nBits=32, showPlots=False, verbose=False, log=print): """Run RM-CLEAN on a complex FDF spectrum given a RMSF. Args: mDictS (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. cutoff (float): CLEAN cutoff in flux units Kwargs: maxIter (int): Maximum number of CLEAN iterations per pixel. gain (float): CLEAN loop gain. nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? verbose (bool): Verbosity. log (function): Which logging function to use. Returns: mDict (dict): Summary of RMCLEAN results. arrdict (dict): Data output by RMCLEAN. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g flux units" % (mDictS["dFDFth"])) if cutoff < 0: if verbose: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDictS["dFDFth"] * cutoff if verbose: log("Absolute value = %.3g" % cutoff) else: if verbose: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDictS["dFDFth"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr, residFDF = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict["dPhiObserved_rm2"] = mDict["dPhiPeakPIfit_rm2"] * mDict[ "dFDFcorMAD"] / mDictS["dFDFth"] mDict["dAmpObserved"] = mDict["dFDFcorMAD"] mDict["dPolAngleFitObserved_deg"] = mDict["dPolAngleFit_deg"] * mDict[ "dFDFcorMAD"] / mDictS["dFDFth"] nChansGood = np.sum(np.where(lambdaSqArr_m2 == lambdaSqArr_m2, 1.0, 0.0)) varLamSqArr_m2 = (np.sum(lambdaSqArr_m2**2.0) - np.sum(lambdaSqArr_m2)**2.0 / nChansGood) / (nChansGood - 1) mDict["dPolAngle0ChanObserved_deg"] = \ np.degrees(np.sqrt( mDict["dFDFcorMAD"]**2.0 / (4.0*(nChansGood-2.0)*mDict["ampPeakPIfit"]**2.0) * ((nChansGood-1)/nChansGood + mDictS["lam0Sq_m2"]**2.0/varLamSqArr_m2) )) if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFitObserved_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0ChanObserved_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiObserved_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9)) log('I freq0 = %.4g %s' % (mDictS["Ifreq0"], mDictS["units"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) %s' % (mDict["ampPeakPIfit"], mDict["dAmpObserved"], mDict["dAmpPeakPIfit"], mDictS["units"])) log('QU Noise = %.4g %s' % (mDictS["dQU"], mDictS["units"])) log('FDF Noise (theory) = %.4g %s' % (mDictS["dFDFth"], mDictS["units"])) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict["dFDFcorMAD"], mDictS["units"])) log('FDF Noise (rms) = %.4g %s' % (mDict["dFDFrms"], mDictS["units"])) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots: plot_clean_spec(phiArr_radm2, dirtyFDF, cleanFDF, ccArr, residFDF, cutoff, mDictS["units"]) print("Press <RETURN> to exit ...", end=' ') input() #add array dictionary arrdict = dict() arrdict["phiArr_radm2"] = phiArr_radm2 arrdict["freqArr_Hz"] = freqArr_Hz arrdict["cleanFDF"] = cleanFDF arrdict["ccArr"] = ccArr arrdict["iterCountArr"] = iterCountArr arrdict["residFDF"] = residFDF return mDict, arrdict
def pixelwise_peak_fitting(FDF, phiArr, fwhmRMSF, lamSqArr_m2, lam0Sq, product_list, noiseArr=None, stokesIcube=None): """ Performs the 1D FDF peak fitting used in RMsynth/RMclean_1D, pixelwise on all pixels in a 3D FDF cube. Inputs: FDF: FDF cube (3D array). This is assumed to be in astropy axis ordering (Phi, dec, ra) phiArr: (1D) array of phi values fwhmRMSF: 2D array of RMSF FWHM values lamSqArr_m2: 1D array of channel lambda^2 values. lam0Sq: scalar value for lambda^2_0, the reference wavelength squared. product_list: list containing the names of the fitting products to save. dFDF: 2D array of theoretical noise values. If not supplied, the peak fitting will default to using the measured noise. Outputs: dictionary of 2D maps, 1 per fit output """ #FDF: output by synth3d or clean3d #phiArr: can be generated from FDF cube #fwhm: 2D map produced synth3D #dFDFth: not currently produced (default mode not to input noise!) # If not present, measure_FDF_parms uses the corMAD noise. # #lamSqArr is only needed for computing errors in derotated angles # This could be compressed to a map or single value from RMsynth? #lam0Sq is necessary for de-rotation map_size = FDF.shape[1:] #Create pixel location arrays: xarr, yarr = np.meshgrid(range(map_size[0]), range(map_size[1])) xarr = xarr.ravel() yarr = yarr.ravel() #Create empty maps: map_dict = {} for parameter in product_list: map_dict[parameter] = np.zeros(map_size) freqArr_Hz = C / np.sqrt(lamSqArr_m2) freq0_Hz = C / np.sqrt(lam0Sq) if stokesIcube is not None: idx = np.abs(freqArr_Hz - freq0_Hz).argmin() if freqArr_Hz[idx] < freq0_Hz: Ifreq0Arr = interp_images(stokesIcube[idx, :, :], stokesIcube[idx + 1, :, :], f=0.5) elif freqArr_Hz[idx] > freq0_Hz: Ifreq0Arr = interp_images(stokesIcube[idx - 1, :, :], stokesIcube[idx, :, :], f=0.5) else: Ifreq0Arr = stokesIcube[idx, :, :] else: Ifreq0Arr = np.ones(map_size) stokesIcube = np.ones((freqArr_Hz.size, map_size[0], map_size[1])) #compute weights if needed: if noiseArr is not None: weightArr = 1.0 / np.power(noiseArr, 2.0) weightArr = np.where(np.isnan(weightArr), 0.0, weightArr) dFDF = Ifreq0Arr * np.sqrt( np.sum(weightArr**2 * np.nan_to_num(noiseArr)**2) / (np.sum(weightArr))**2) else: weightArr = np.ones(lamSqArr_m2.shape, dtype=np.float32) dFDF = None #Run fitting pixel-wise: progress(40, 0) for i in range(xarr.size): FDF_pix = FDF[:, xarr[i], yarr[i]] fwhmRMSF_pix = fwhmRMSF[xarr[i], yarr[i]] if type(dFDF) == type(None): dFDF_pix = None else: dFDF_pix = dFDF[xarr[i], yarr[i]] try: mDict = measure_FDF_parms(FDF_pix, phiArr, fwhmRMSF_pix, dFDF=dFDF_pix, lamSqArr_m2=lamSqArr_m2, lam0Sq=lam0Sq, snrDoBiasCorrect=5.0) #Add keywords not included by the above function: mDict['lam0Sq_m2'] = lam0Sq mDict['freq0_Hz'] = freq0_Hz mDict['fwhmRMSF'] = fwhmRMSF_pix mDict['Ifreq0'] = Ifreq0Arr[xarr[i], yarr[i]] mDict['fracPol'] = mDict["ampPeakPIfit"] / mDict['Ifreq0'] mDict["min_freq"] = float(np.min(freqArr_Hz)) mDict["max_freq"] = float(np.max(freqArr_Hz)) mDict["N_channels"] = lamSqArr_m2.size mDict["median_channel_width"] = float( np.median(np.diff(freqArr_Hz))) if dFDF_pix is not None: mDict['dFDFth'] = dFDF_pix else: mDict['dFDFth'] = np.nan for parameter in product_list: map_dict[parameter][xarr[i], yarr[i]] = mDict[parameter] except: for parameter in product_list: map_dict[parameter][xarr[i], yarr[i]] = np.nan if i % 100 == 0: progress(40, i / xarr.size * 100) return map_dict
def run_rmclean(mDictS, aDict, cutoff, maxIter=1000, gain=0.1, prefixOut="", outDir="", nBits=32, showPlots=False, doAnimate=False, verbose=False, log=print): """ Run RM-CLEAN on a complex FDF spectrum given a RMSF. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g mJy/beam/rmsf" % (mDictS["dFDFth_Jybm"] * 1e3)) if cutoff < 0: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDictS["dFDFth_Jybm"] * cutoff log("Absolute value = %.3g" % cutoff) else: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDictS["dFDFth_Jybm"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots, doAnimate = doAnimate) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth_Jybm"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict["dPhiObserved_rm2"] = mDict["dPhiPeakPIfit_rm2"] * mDict[ "dFDFcorMAD_Jybm"] / mDictS["dFDFth_Jybm"] mDict["dAmpObserved_Jybm"] = mDict["dFDFcorMAD_Jybm"] mDict["dPolAngleFitObserved_deg"] = mDict["dPolAngleFit_deg"] * mDict[ "dFDFcorMAD_Jybm"] / mDictS["dFDFth_Jybm"] nChansGood = np.sum(np.where(lambdaSqArr_m2 == lambdaSqArr_m2, 1.0, 0.0)) varLamSqArr_m2 = (np.sum(lambdaSqArr_m2**2.0) - np.sum(lambdaSqArr_m2)**2.0 / nChansGood) / (nChansGood - 1) mDict["dPolAngle0ChanObserved_deg"] = \ np.degrees(np.sqrt( mDict["dFDFcorMAD_Jybm"]**2.0 / (4.0*(nChansGood-2.0)*mDict["ampPeakPIfit_Jybm"]**2.0) * ((nChansGood-1)/nChansGood + mDictS["lam0Sq_m2"]**2.0/varLamSqArr_m2) )) # Save the deconvolved FDF and CC model to ASCII files log("Saving the clean FDF and component model to ASCII files.") outFile = prefixOut + "_FDFclean.dat" log("> %s" % outFile) np.savetxt(outFile, list(zip(phiArr_radm2, cleanFDF.real, cleanFDF.imag))) outFile = prefixOut + "_FDFmodel.dat" log("> %s" % outFile) np.savetxt(outFile, list(zip(phiArr_radm2, ccArr.real, ccArr.imag))) # Save the RM-clean measurements to a "key=value" text file log("Saving the measurements on the FDF in 'key=val' and JSON formats.") outFile = prefixOut + "_RMclean.dat" log("> %s" % outFile) FH = open(outFile, "w") for k, v in mDict.items(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMclean.json" log("> %s" % outFile) json.dump(mDict, open(outFile, "w")) # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFitObserved_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0ChanObserved_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiObserved_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9)) log('I freq0 = %.4g mJy/beam' % (mDictS["Ifreq0_mJybm"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) mJy/beam' % (mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpObserved_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3)) log('QU Noise = %.4g mJy/beam' % (mDictS["dQU_Jybm"] * 1e3)) log('FDF Noise (theory) = %.4g mJy/beam' % (mDictS["dFDFth_Jybm"] * 1e3)) log('FDF Noise (Corrected MAD) = %.4g mJy/beam' % (mDict["dFDFcorMAD_Jybm"] * 1e3)) log('FDF Noise (rms) = %.4g mJy/beam' % (mDict["dFDFrms_Jybm"] * 1e3)) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots or doAnimate: print("Press <RETURN> to exit ...", end=' ') input() return mDict
def run_rmsynth(dataFile, polyOrd=3, phiMax_radm2=None, dPhi_radm2=None, nSamples=10.0, weightType="variance", fitRMSF=False, noStokesI=False, phiNoise_radm2=1e6, nBits=32, showPlots=False, debug=False): """ Read the I, Q & U data from the ASCII file and run RM-synthesis. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2 * nBits) # Output prefix is derived from the input file name prefixOut, ext = os.path.splitext(dataFile) # Read the data-file. Format=space-delimited, comments="#". print "Reading the data file '%s':" % dataFile # freq_Hz, I_Jy, Q_Jy, U_Jy, dI_Jy, dQ_Jy, dU_Jy try: print "> Trying [freq_Hz, I_Jy, Q_Jy, U_Jy, dI_Jy, dQ_Jy, dU_Jy]", (freqArr_Hz, IArr_Jy, QArr_Jy, UArr_Jy, dIArr_Jy, dQArr_Jy, dUArr_Jy) = \ np.loadtxt(dataFile, unpack=True, dtype=dtFloat) print "... success." except Exception: print "...failed." # freq_Hz, q_Jy, u_Jy, dq_Jy, du_Jy try: print "> Trying [freq_Hz, q_Jy, u_Jy, dq_Jy, du_Jy]", (freqArr_Hz, QArr_Jy, UArr_Jy, dQArr_Jy, dUArr_Jy) = \ np.loadtxt(dataFile, unpack=True, dtype=dtFloat) print "... success." noStokesI = True except Exception: print "...failed." if debug: print traceback.format_exc() sys.exit() print "Successfully read in the Stokes spectra." # If no Stokes I present, create a dummy spectrum = unity if noStokesI: print "Warn: no Stokes I data in use." IArr_Jy = np.ones_like(QArr_Jy) dIArr_Jy = np.zeros_like(QArr_Jy) # Convert to GHz and mJy for convenience freqArr_GHz = freqArr_Hz / 1e9 IArr_mJy = IArr_Jy * 1e3 QArr_mJy = QArr_Jy * 1e3 UArr_mJy = UArr_Jy * 1e3 dIArr_mJy = dIArr_Jy * 1e3 dQArr_mJy = dQArr_Jy * 1e3 dUArr_mJy = dUArr_Jy * 1e3 dQUArr_mJy = (dQArr_mJy + dUArr_mJy) / 2.0 dQUArr_Jy = dQUArr_mJy / 1e3 # Fit the Stokes I spectrum and create the fractional spectra IModArr, qArr, uArr, dqArr, duArr, fitDict = \ create_frac_spectra(freqArr = freqArr_GHz, IArr = IArr_mJy, QArr = QArr_mJy, UArr = UArr_mJy, dIArr = dIArr_mJy, dQArr = dQArr_mJy, dUArr = dUArr_mJy, polyOrd = polyOrd, verbose = True, debug = debug) # Plot the data and the Stokes I model fit if showPlots: print "Plotting the input data and spectral index fit." freqHirArr_Hz = np.linspace(freqArr_Hz[0], freqArr_Hz[-1], 10000) IModHirArr_mJy = poly5(fitDict["p"])(freqHirArr_Hz / 1e9) specFig = plt.figure(figsize=(12.0, 8)) plot_Ipqu_spectra_fig(freqArr_Hz=freqArr_Hz, IArr_mJy=IArr_mJy, qArr=qArr, uArr=uArr, dIArr_mJy=dIArr_mJy, dqArr=dqArr, duArr=duArr, freqHirArr_Hz=freqHirArr_Hz, IModArr_mJy=IModHirArr_mJy, fig=specFig) # Use the custom navigation toolbar (does not work on Mac OS X) try: specFig.canvas.toolbar.pack_forget() CustomNavbar(specFig.canvas, specFig.canvas.toolbar.window) except Exception: pass # Display the figure specFig.show() # DEBUG (plot the Q, U and average RMS spectrum) if debug: rmsFig = plt.figure(figsize=(12.0, 8)) ax = rmsFig.add_subplot(111) ax.plot(freqArr_Hz / 1e9, dQUArr_mJy, marker='o', color='k', lw=0.5, label='rms <QU>') ax.plot(freqArr_Hz / 1e9, dQArr_mJy, marker='o', color='b', lw=0.5, label='rms Q') ax.plot(freqArr_Hz / 1e9, dUArr_mJy, marker='o', color='r', lw=0.5, label='rms U') xRange = (np.nanmax(freqArr_Hz) - np.nanmin(freqArr_Hz)) / 1e9 ax.set_xlim( np.min(freqArr_Hz) / 1e9 - xRange * 0.05, np.max(freqArr_Hz) / 1e9 + xRange * 0.05) ax.set_xlabel('$\\nu$ (GHz)') ax.set_ylabel('RMS (mJy bm$^{-1}$)') ax.set_title("RMS noise in Stokes Q, U and <Q,U> spectra") rmsFig.show() #-------------------------------------------------------------------------# # Calculate some wavelength parameters lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) dFreq_Hz = np.nanmin(np.abs(np.diff(freqArr_Hz))) lambdaSqRange_m2 = (np.nanmax(lambdaSqArr_m2) - np.nanmin(lambdaSqArr_m2)) dLambdaSqMin_m2 = np.nanmin(np.abs(np.diff(lambdaSqArr_m2))) dLambdaSqMax_m2 = np.nanmax(np.abs(np.diff(lambdaSqArr_m2))) # Set the Faraday depth range fwhmRMSF_radm2 = 2.0 * m.sqrt(3.0) / lambdaSqRange_m2 if dPhi_radm2 is None: dPhi_radm2 = fwhmRMSF_radm2 / nSamples if phiMax_radm2 is None: phiMax_radm2 = m.sqrt(3.0) / dLambdaSqMax_m2 phiMax_radm2 = max(phiMax_radm2, 600.0) # Force the minimum phiMax # Faraday depth sampling. Zero always centred on middle channel nChanRM = round(abs((phiMax_radm2 - 0.0) / dPhi_radm2)) * 2.0 + 1.0 startPhi_radm2 = -(nChanRM - 1.0) * dPhi_radm2 / 2.0 stopPhi_radm2 = +(nChanRM - 1.0) * dPhi_radm2 / 2.0 phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) phiArr_radm2 = phiArr_radm2.astype(dtFloat) print "PhiArr = %.2f to %.2f by %.2f (%d chans)." % ( phiArr_radm2[0], phiArr_radm2[-1], float(dPhi_radm2), nChanRM) # Calculate the weighting as 1/sigma^2 or all 1s (natural) if weightType == "variance": weightArr = 1.0 / np.power(dQUArr_mJy, 2.0) else: weightType = "natural" weightArr = np.ones(freqArr_Hz.shape, dtype=dtFloat) print "Weight type is '%s'." % weightType startTime = time.time() # Perform RM-synthesis on the spectrum dirtyFDF, lam0Sq_m2 = do_rmsynth_planes(dataQ=qArr, dataU=uArr, lambdaSqArr_m2=lambdaSqArr_m2, phiArr_radm2=phiArr_radm2, weightArr=weightArr, nBits=nBits, verbose=True) # Calculate the Rotation Measure Spread Function RMSFArr, phi2Arr_radm2, fwhmRMSFArr, fitStatArr = \ get_rmsf_planes(lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr = weightArr, mskArr = np.isnan(qArr), lam0Sq_m2 = lam0Sq_m2, double = True, fitRMSF = fitRMSF, fitRMSFreal = False, nBits = nBits, verbose = True) fwhmRMSF = float(fwhmRMSFArr) # ALTERNATE RM-SYNTHESIS CODE --------------------------------------------# #dirtyFDF, [phi2Arr_radm2, RMSFArr], lam0Sq_m2, fwhmRMSF = \ # do_rmsynth(qArr, uArr, lambdaSqArr_m2, phiArr_radm2, weightArr) #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) print "> RM-synthesis completed in %.2f seconds." % cputime # Determine the Stokes I value at lam0Sq_m2 from the Stokes I model # Multiply the dirty FDF by Ifreq0 to recover the PI in Jy freq0_Hz = C / m.sqrt(lam0Sq_m2) Ifreq0_mJybm = poly5(fitDict["p"])(freq0_Hz / 1e9) dirtyFDF *= (Ifreq0_mJybm / 1e3) # FDF is in Jy # Calculate the theoretical noise in the FDF dFDFth_Jybm = np.sqrt(1. / np.sum(1. / dQUArr_Jy**2.)) # Measure the parameters of the dirty FDF # Use the theoretical noise to calculate uncertainties mDict = measure_FDF_parms(FDF=dirtyFDF, phiArr=phiArr_radm2, fwhmRMSF=fwhmRMSF, dFDF=dFDFth_Jybm, lamSqArr_m2=lambdaSqArr_m2, lam0Sq=lam0Sq_m2) mDict["Ifreq0_mJybm"] = toscalar(Ifreq0_mJybm) mDict["polyCoeffs"] = ",".join([str(x) for x in fitDict["p"]]) mDict["IfitStat"] = fitDict["fitStatus"] mDict["IfitChiSqRed"] = fitDict["chiSqRed"] mDict["lam0Sq_m2"] = toscalar(lam0Sq_m2) mDict["freq0_Hz"] = toscalar(freq0_Hz) mDict["fwhmRMSF"] = toscalar(fwhmRMSF) mDict["dQU_Jybm"] = toscalar(nanmedian(dQUArr_Jy)) mDict["dFDFth_Jybm"] = toscalar(dFDFth_Jybm) # Measure the complexity of the q and u spectra mDict["fracPol"] = mDict["ampPeakPIfit_Jybm"] / (Ifreq0_mJybm / 1e3) mD, pD = measure_qu_complexity(freqArr_Hz=freqArr_Hz, qArr=qArr, uArr=uArr, dqArr=dqArr, duArr=duArr, fracPol=mDict["fracPol"], psi0_deg=mDict["polAngle0Fit_deg"], RM_radm2=mDict["phiPeakPIfit_rm2"]) mDict.update(mD) # Debugging plots for spectral complexity measure if debug: tmpFig = plot_complexity_fig(xArr=pD["xArrQ"], qArr=pD["yArrQ"], dqArr=pD["dyArrQ"], sigmaAddqArr=pD["sigmaAddArrQ"], chiSqRedqArr=pD["chiSqRedArrQ"], probqArr=pD["probArrQ"], uArr=pD["yArrU"], duArr=pD["dyArrU"], sigmaAdduArr=pD["sigmaAddArrU"], chiSqReduArr=pD["chiSqRedArrU"], probuArr=pD["probArrU"], mDict=mDict) tmpFig.show() # Save the dirty FDF, RMSF and weight array to ASCII files print "Saving the dirty FDF, RMSF weight arrays to ASCII files." outFile = prefixOut + "_FDFdirty.dat" print "> %s" % outFile np.savetxt(outFile, zip(phiArr_radm2, dirtyFDF.real, dirtyFDF.imag)) outFile = prefixOut + "_RMSF.dat" print "> %s" % outFile np.savetxt(outFile, zip(phi2Arr_radm2, RMSFArr.real, RMSFArr.imag)) outFile = prefixOut + "_weight.dat" print "> %s" % outFile np.savetxt(outFile, zip(freqArr_Hz, weightArr)) # Save the measurements to a "key=value" text file print "Saving the measurements on the FDF in 'key=val' and JSON formats." outFile = prefixOut + "_RMsynth.dat" print "> %s" % outFile FH = open(outFile, "w") for k, v in mDict.iteritems(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMsynth.json" print "> %s" % outFile json.dump(dict(mDict), open(outFile, "w")) # Print the results to the screen print print '-' * 80 print 'RESULTS:\n' print 'FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"]) print 'Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"]) print 'Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"]) print 'Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"]) print 'freq0_GHz = %.4g ' % (mDict["freq0_Hz"] / 1e9) print 'I freq0 = %.4g mJy/beam' % (mDict["Ifreq0_mJybm"]) print 'Peak PI = %.4g (+/-%.4g) mJy/beam' % ( mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3) print 'QU Noise = %.4g mJy/beam' % (mDict["dQU_Jybm"] * 1e3) print 'FDF Noise (theory) = %.4g mJy/beam' % (mDict["dFDFth_Jybm"] * 1e3) print 'FDF SNR = %.4g ' % (mDict["snrPIfit"]) print 'sigma_add(q) = %.4g (+%.4g, -%.4g)' % ( mDict["sigmaAddQ"], mDict["dSigmaAddPlusQ"], mDict["dSigmaAddMinusQ"]) print 'sigma_add(u) = %.4g (+%.4g, -%.4g)' % ( mDict["sigmaAddU"], mDict["dSigmaAddPlusU"], mDict["dSigmaAddMinusU"]) print print '-' * 80 # Plot the RM Spread Function and dirty FDF if showPlots: fdfFig = plt.figure(figsize=(12.0, 8)) plot_rmsf_fdf_fig(phiArr=phiArr_radm2, FDF=dirtyFDF, phi2Arr=phi2Arr_radm2, RMSFArr=RMSFArr, fwhmRMSF=fwhmRMSF, vLine=mDict["phiPeakPIfit_rm2"], fig=fdfFig) # Use the custom navigation toolbar try: fdfFig.canvas.toolbar.pack_forget() CustomNavbar(fdfFig.canvas, fdfFig.canvas.toolbar.window) except Exception: pass # Display the figure fdfFig.show() # Pause if plotting enabled if showPlots or debug: print "Press <RETURN> to exit ...", raw_input()
def run_rmclean(mDict, aDict, cutoff, maxIter=1000, gain=0.1, nBits=32, showPlots=False, prefixOut="", verbose=False, log=print, saveFigures=False, window=None): """Run RM-CLEAN on a complex FDF spectrum given a RMSF. Args: mDict (dict): Summary of RM synthesis results. aDict (dict): Data output by RM synthesis. cutoff (float): CLEAN cutoff in flux units (positive) or as multiple of theoretical noise (negative) (i.e. -8 = clean to 8 sigma threshold) Kwargs: maxIter (int): Maximum number of CLEAN iterations per pixel. gain (float): CLEAN loop gain. nBits (int): Precision of floating point numbers. showPlots (bool): Show plots? verbose (bool): Verbosity. log (function): Which logging function to use. window (float): Threshold for deeper windowed cleaning Returns: mDict_cl (dict): Summary of RMCLEAN results. aDict_cl (dict): Data output by RMCLEAN. """ phiArr_radm2 = aDict["phiArr_radm2"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # If the cutoff is negative, assume it is a sigma level if verbose: log("Expected RMS noise = %.4g flux units" % (mDict["dFDFth"])) if cutoff < 0: if verbose: log("Using a sigma cutoff of %.1f." % (-1 * cutoff)) cutoff = -1 * mDict["dFDFth"] * cutoff if verbose: log("Absolute value = %.3g" % cutoff) else: if verbose: log("Using an absolute cutoff of %.3g (%.1f x expected RMS)." % (cutoff, cutoff / mDict["dFDFth"])) if window is None: window = np.nan else: if window < 0: if verbose: log("Using a window sigma cutoff of %.1f." % (-1 * window)) window = -1 * mDict["dFDFth"] * window if verbose: log("Absolute value = %.3g" % window) else: if verbose: log("Using an absolute window cutoff of %.3g (%.1f x expected RMS)." % (window, window / mDict["dFDFth"])) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr, residFDF = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDict["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = verbose, doPlots = showPlots, window = window ) # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDict["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-CLEAN completed in %.4f seconds." % cputime) # Measure the parameters of the deconvolved FDF mDict_cl = measure_FDF_parms(FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDict["fwhmRMSF"], dFDF=mDict["dFDFth"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDict["lam0Sq_m2"]) mDict_cl["cleanCutoff"] = cutoff mDict_cl["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict_cl["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) #Calculating observed errors (based on dFDFcorMAD) mDict_cl["dPhiObserved_rm2"] = mDict_cl["dPhiPeakPIfit_rm2"] * mDict_cl[ "dFDFcorMAD"] / mDict["dFDFth"] mDict_cl["dAmpObserved"] = mDict_cl["dFDFcorMAD"] mDict_cl["dPolAngleFitObserved_deg"] = mDict_cl[ "dPolAngleFit_deg"] * mDict_cl["dFDFcorMAD"] / mDict["dFDFth"] mDict_cl["dPolAngleFit0Observed_deg"] = mDict_cl[ "dPolAngle0Fit_deg"] * mDict_cl["dFDFcorMAD"] / mDict["dFDFth"] if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict_cl["polAngleFit_deg"], mDict_cl["dPolAngleFitObserved_deg"], mDict_cl["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g observed, +- %.4g theoretical) deg' % (mDict_cl["polAngle0Fit_deg"], mDict_cl["dPolAngleFit0Observed_deg"], mDict_cl["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g observed, +- %.4g theoretical) rad/m^2' % (mDict_cl["phiPeakPIfit_rm2"], mDict_cl["dPhiObserved_rm2"], mDict_cl["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDict["freq0_Hz"] / 1e9)) log('I freq0 = %.4g %s' % (mDict["Ifreq0"], mDict["units"])) log('Peak PI = %.4g (+/-%.4g observed, +- %.4g theoretical) %s' % (mDict_cl["ampPeakPIfit"], mDict_cl["dAmpObserved"], mDict_cl["dAmpPeakPIfit"], mDict["units"])) log('QU Noise = %.4g %s' % (mDict["dQU"], mDict["units"])) log('FDF Noise (theory) = %.4g %s' % (mDict["dFDFth"], mDict["units"])) log('FDF Noise (Corrected MAD) = %.4g %s' % (mDict_cl["dFDFcorMAD"], mDict["units"])) log('FDF Noise (rms) = %.4g %s' % (mDict_cl["dFDFrms"], mDict["units"])) log('FDF SNR = %.4g ' % (mDict_cl["snrPIfit"])) log() log('-' * 80) # Pause to display the figure if showPlots or saveFigures: fdfFig = plot_clean_spec(phiArr_radm2, dirtyFDF, cleanFDF, ccArr, residFDF, cutoff, window, mDict["units"]) # Pause if plotting enabled if showPlots: plt.show() if saveFigures: if verbose: print("Saving CLEAN FDF plot:") outFilePlot = prefixOut + "_cleanFDF-plots.pdf" if verbose: print("> " + outFilePlot) fdfFig.savefig(outFilePlot, bbox_inches='tight') # print("Press <RETURN> to exit ...", end=' ') # input() #add array dictionary aDict_cl = dict() aDict_cl["phiArr_radm2"] = phiArr_radm2 aDict_cl["freqArr_Hz"] = freqArr_Hz aDict_cl["cleanFDF"] = cleanFDF aDict_cl["ccArr"] = ccArr aDict_cl["iterCountArr"] = iterCountArr aDict_cl["residFDF"] = residFDF return mDict_cl, aDict_cl
def run_rmsynth(data, polyOrd=3, phiMax_radm2=None, dPhi_radm2=None, nSamples=10.0, weightType="variance", fitRMSF=False, noStokesI=False, phiNoise_radm2=1e6, nBits=32, showPlots=False, debug=False, verbose=False, log=print): """ Read the I, Q & U data and run RM-synthesis. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2 * nBits) # freq_Hz, I_Jy, Q_Jy, U_Jy, dI_Jy, dQ_Jy, dU_Jy try: if verbose: log("> Trying [freq_Hz, I_Jy, Q_Jy, U_Jy, dI_Jy, dQ_Jy, dU_Jy]", end=' ') (freqArr_Hz, IArr_Jy, QArr_Jy, UArr_Jy, dIArr_Jy, dQArr_Jy, dUArr_Jy) = data if verbose: log("... success.") except Exception: if verbose: log("...failed.") # freq_Hz, q_Jy, u_Jy, dq_Jy, du_Jy try: if verbose: log("> Trying [freq_Hz, q_Jy, u_Jy, dq_Jy, du_Jy]", end=' ') (freqArr_Hz, QArr_Jy, UArr_Jy, dQArr_Jy, dUArr_Jy) = data if verbose: log("... success.") noStokesI = True except Exception: if verbose: log("...failed.") if debug: log(traceback.format_exc()) sys.exit() if verbose: log("Successfully read in the Stokes spectra.") # If no Stokes I present, create a dummy spectrum = unity if noStokesI: log("Warn: no Stokes I data in use.") IArr_Jy = np.ones_like(QArr_Jy) dIArr_Jy = np.zeros_like(QArr_Jy) # Convert to GHz and mJy for convenience freqArr_GHz = freqArr_Hz / 1e9 IArr_mJy = IArr_Jy * 1e3 QArr_mJy = QArr_Jy * 1e3 UArr_mJy = UArr_Jy * 1e3 dIArr_mJy = dIArr_Jy * 1e3 dQArr_mJy = dQArr_Jy * 1e3 dUArr_mJy = dUArr_Jy * 1e3 dQUArr_mJy = (dQArr_mJy + dUArr_mJy) / 2.0 dQUArr_Jy = dQUArr_mJy / 1e3 # Fit the Stokes I spectrum and create the fractional spectra IModArr, qArr, uArr, dqArr, duArr, fitDict = \ create_frac_spectra(freqArr = freqArr_GHz, IArr = IArr_mJy, QArr = QArr_mJy, UArr = UArr_mJy, dIArr = dIArr_mJy, dQArr = dQArr_mJy, dUArr = dUArr_mJy, polyOrd = polyOrd, verbose = True, debug = debug) # Plot the data and the Stokes I model fit if showPlots: if verbose: log("Plotting the input data and spectral index fit.") freqHirArr_Hz = np.linspace(freqArr_Hz[0], freqArr_Hz[-1], 10000) IModHirArr_mJy = poly5(fitDict["p"])(freqHirArr_Hz / 1e9) specFig = plt.figure(figsize=(12.0, 8)) plot_Ipqu_spectra_fig(freqArr_Hz=freqArr_Hz, IArr_mJy=IArr_mJy, qArr=qArr, uArr=uArr, dIArr_mJy=dIArr_mJy, dqArr=dqArr, duArr=duArr, freqHirArr_Hz=freqHirArr_Hz, IModArr_mJy=IModHirArr_mJy, fig=specFig) # Use the custom navigation toolbar (does not work on Mac OS X) # try: # specFig.canvas.toolbar.pack_forget() # CustomNavbar(specFig.canvas, specFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # if not plt.isinteractive(): # specFig.show() # DEBUG (plot the Q, U and average RMS spectrum) if debug: rmsFig = plt.figure(figsize=(12.0, 8)) ax = rmsFig.add_subplot(111) ax.plot(freqArr_Hz / 1e9, dQUArr_mJy, marker='o', color='k', lw=0.5, label='rms <QU>') ax.plot(freqArr_Hz / 1e9, dQArr_mJy, marker='o', color='b', lw=0.5, label='rms Q') ax.plot(freqArr_Hz / 1e9, dUArr_mJy, marker='o', color='r', lw=0.5, label='rms U') xRange = (np.nanmax(freqArr_Hz) - np.nanmin(freqArr_Hz)) / 1e9 ax.set_xlim( np.min(freqArr_Hz) / 1e9 - xRange * 0.05, np.max(freqArr_Hz) / 1e9 + xRange * 0.05) ax.set_xlabel('$\\nu$ (GHz)') ax.set_ylabel('RMS (mJy bm$^{-1}$)') ax.set_title("RMS noise in Stokes Q, U and <Q,U> spectra") # rmsFig.show() #-------------------------------------------------------------------------# # Calculate some wavelength parameters lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) dFreq_Hz = np.nanmin(np.abs(np.diff(freqArr_Hz))) lambdaSqRange_m2 = (np.nanmax(lambdaSqArr_m2) - np.nanmin(lambdaSqArr_m2)) dLambdaSqMin_m2 = np.nanmin(np.abs(np.diff(lambdaSqArr_m2))) dLambdaSqMax_m2 = np.nanmax(np.abs(np.diff(lambdaSqArr_m2))) # Set the Faraday depth range fwhmRMSF_radm2 = 2.0 * m.sqrt(3.0) / lambdaSqRange_m2 if dPhi_radm2 is None: dPhi_radm2 = fwhmRMSF_radm2 / nSamples if phiMax_radm2 is None: phiMax_radm2 = m.sqrt(3.0) / dLambdaSqMax_m2 phiMax_radm2 = max(phiMax_radm2, 600.0) # Force the minimum phiMax # Faraday depth sampling. Zero always centred on middle channel nChanRM = int(round(abs((phiMax_radm2 - 0.0) / dPhi_radm2)) * 2.0 + 1.0) startPhi_radm2 = -(nChanRM - 1.0) * dPhi_radm2 / 2.0 stopPhi_radm2 = +(nChanRM - 1.0) * dPhi_radm2 / 2.0 phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) phiArr_radm2 = phiArr_radm2.astype(dtFloat) if verbose: log("PhiArr = %.2f to %.2f by %.2f (%d chans)." % (phiArr_radm2[0], phiArr_radm2[-1], float(dPhi_radm2), nChanRM)) # Calculate the weighting as 1/sigma^2 or all 1s (uniform) if weightType == "variance": weightArr = 1.0 / np.power(dQUArr_mJy, 2.0) else: weightType = "uniform" weightArr = np.ones(freqArr_Hz.shape, dtype=dtFloat) if verbose: log("Weight type is '%s'." % weightType) startTime = time.time() # Perform RM-synthesis on the spectrum dirtyFDF, lam0Sq_m2 = do_rmsynth_planes(dataQ=qArr, dataU=uArr, lambdaSqArr_m2=lambdaSqArr_m2, phiArr_radm2=phiArr_radm2, weightArr=weightArr, nBits=nBits, verbose=True, log=log) # Calculate the Rotation Measure Spread Function RMSFArr, phi2Arr_radm2, fwhmRMSFArr, fitStatArr = \ get_rmsf_planes(lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr = weightArr, mskArr = ~np.isfinite(qArr), lam0Sq_m2 = lam0Sq_m2, double = True, fitRMSF = fitRMSF, fitRMSFreal = False, nBits = nBits, verbose = True, log = log) fwhmRMSF = float(fwhmRMSFArr) # ALTERNATE RM-SYNTHESIS CODE --------------------------------------------# #dirtyFDF, [phi2Arr_radm2, RMSFArr], lam0Sq_m2, fwhmRMSF = \ # do_rmsynth(qArr, uArr, lambdaSqArr_m2, phiArr_radm2, weightArr) #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) if verbose: log("> RM-synthesis completed in %.2f seconds." % cputime) # Determine the Stokes I value at lam0Sq_m2 from the Stokes I model # Multiply the dirty FDF by Ifreq0 to recover the PI in Jy freq0_Hz = C / m.sqrt(lam0Sq_m2) Ifreq0_mJybm = poly5(fitDict["p"])(freq0_Hz / 1e9) dirtyFDF *= (Ifreq0_mJybm / 1e3) # FDF is in Jy # Calculate the theoretical noise in the FDF !!Old formula only works for wariance weights! #dFDFth_Jybm = np.sqrt(1./np.sum(1./dQUArr_Jy**2.)) dFDFth_Jybm = np.sqrt( np.sum(weightArr**2 * dQUArr_Jy**2) / (np.sum(weightArr))**2) # Measure the parameters of the dirty FDF # Use the theoretical noise to calculate uncertainties mDict = measure_FDF_parms(FDF=dirtyFDF, phiArr=phiArr_radm2, fwhmRMSF=fwhmRMSF, dFDF=dFDFth_Jybm, lamSqArr_m2=lambdaSqArr_m2, lam0Sq=lam0Sq_m2) mDict["Ifreq0_mJybm"] = toscalar(Ifreq0_mJybm) mDict["polyCoeffs"] = ",".join([str(x) for x in fitDict["p"]]) mDict["IfitStat"] = fitDict["fitStatus"] mDict["IfitChiSqRed"] = fitDict["chiSqRed"] mDict["lam0Sq_m2"] = toscalar(lam0Sq_m2) mDict["freq0_Hz"] = toscalar(freq0_Hz) mDict["fwhmRMSF"] = toscalar(fwhmRMSF) mDict["dQU_Jybm"] = toscalar(nanmedian(dQUArr_Jy)) mDict["dFDFth_Jybm"] = toscalar(dFDFth_Jybm) if mDict['phiPeakPIfit_rm2'] == None: log('Peak is at edge of RM spectrum! Peak fitting failed!\n') log('Rerunning with Phi_max twice as large.') #The following code re-runs everything with higher phiMax, #Then overwrite the appropriate variables so as to continue on without #interuption. mDict, aDict = run_rmsynth(data=data, polyOrd=polyOrd, phiMax_radm2=phiMax_radm2 * 2, dPhi_radm2=dPhi_radm2, nSamples=nSamples, weightType=weightType, fitRMSF=fitRMSF, noStokesI=noStokesI, nBits=nBits, showPlots=False, debug=debug, verbose=verbose) phiArr_radm2 = aDict["phiArr_radm2"] phi2Arr_radm2 = aDict["phi2Arr_radm2"] RMSFArr = aDict["RMSFArr"] freqArr_Hz = aDict["freqArr_Hz"] weightArr = aDict["weightArr"] dirtyFDF = aDict["dirtyFDF"] # Measure the complexity of the q and u spectra mDict["fracPol"] = mDict["ampPeakPIfit_Jybm"] / (Ifreq0_mJybm / 1e3) mD, pD = measure_qu_complexity(freqArr_Hz=freqArr_Hz, qArr=qArr, uArr=uArr, dqArr=dqArr, duArr=duArr, fracPol=mDict["fracPol"], psi0_deg=mDict["polAngle0Fit_deg"], RM_radm2=mDict["phiPeakPIfit_rm2"]) mDict.update(mD) # Debugging plots for spectral complexity measure if debug: tmpFig = plot_complexity_fig(xArr=pD["xArrQ"], qArr=pD["yArrQ"], dqArr=pD["dyArrQ"], sigmaAddqArr=pD["sigmaAddArrQ"], chiSqRedqArr=pD["chiSqRedArrQ"], probqArr=pD["probArrQ"], uArr=pD["yArrU"], duArr=pD["dyArrU"], sigmaAdduArr=pD["sigmaAddArrU"], chiSqReduArr=pD["chiSqRedArrU"], probuArr=pD["probArrU"], mDict=mDict) tmpFig.show() #add array dictionary aDict = dict() aDict["phiArr_radm2"] = phiArr_radm2 aDict["phi2Arr_radm2"] = phi2Arr_radm2 aDict["RMSFArr"] = RMSFArr aDict["freqArr_Hz"] = freqArr_Hz aDict["weightArr"] = weightArr aDict["dirtyFDF"] = dirtyFDF if verbose: # Print the results to the screen log() log('-' * 80) log('RESULTS:\n') log('FWHM RMSF = %.4g rad/m^2' % (mDict["fwhmRMSF"])) log('Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"])) log('Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"])) log('Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"])) log('freq0_GHz = %.4g ' % (mDict["freq0_Hz"] / 1e9)) log('I freq0 = %.4g mJy/beam' % (mDict["Ifreq0_mJybm"])) log('Peak PI = %.4g (+/-%.4g) mJy/beam' % (mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3)) log('QU Noise = %.4g mJy/beam' % (mDict["dQU_Jybm"] * 1e3)) log('FDF Noise (theory) = %.4g mJy/beam' % (mDict["dFDFth_Jybm"] * 1e3)) log('FDF Noise (Corrected MAD) = %.4g mJy/beam' % (mDict["dFDFcorMAD_Jybm"] * 1e3)) log('FDF Noise (rms) = %.4g mJy/beam' % (mDict["dFDFrms_Jybm"] * 1e3)) log('FDF SNR = %.4g ' % (mDict["snrPIfit"])) log('sigma_add(q) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddQ"], mDict["dSigmaAddPlusQ"], mDict["dSigmaAddMinusQ"])) log('sigma_add(u) = %.4g (+%.4g, -%.4g)' % (mDict["sigmaAddU"], mDict["dSigmaAddPlusU"], mDict["dSigmaAddMinusU"])) log() log('-' * 80) # Plot the RM Spread Function and dirty FDF if showPlots: fdfFig = plt.figure(figsize=(12.0, 8)) plot_rmsf_fdf_fig(phiArr=phiArr_radm2, FDF=dirtyFDF, phi2Arr=phi2Arr_radm2, RMSFArr=RMSFArr, fwhmRMSF=fwhmRMSF, vLine=mDict["phiPeakPIfit_rm2"], fig=fdfFig) # Use the custom navigation toolbar # try: # fdfFig.canvas.toolbar.pack_forget() # CustomNavbar(fdfFig.canvas, fdfFig.canvas.toolbar.window) # except Exception: # pass # Display the figure # fdfFig.show() # Pause if plotting enabled if showPlots or debug: plt.show() # #if verbose: print "Press <RETURN> to exit ...", # input() return mDict, aDict
def RM_synth(stokes, weight=True, # weighting needs more testing. Fails on certain events upchan=False, RM_lim=None, nSamples=None, normed=False, noise_type='theory', diagnostic_plots=False, cutoff=None): """ Performs rotation measure synthesis to extract Faraday Dispersion Function and RM measurement Parameters __________ stokes : list (freq,I,Q,U,V,dI,dQ,dU,dV) Stokes params. weight : Bool. Freq. channel std., used as to create array of weights for FDF band_lo, band_hi : float bottom and top freq. band limits of burst. upchan: Bool If true, sets nSamples=3 RM_lim: float (optional) limits in Phi space to calculate the FDF nSamples: int (optional) sampling density in Phi space diagnostic_plots: Bool. outputs diagnostic plots of FDF Returns _______ FDF params, (phi, FDF_arr) : list, array_like (RM,RM_err,PA,PA_err), FDF_arr """ freqArr=stokes[0].copy() IArr=stokes[1].copy() QArr=stokes[2].copy() UArr=stokes[3].copy() VArr=stokes[4].copy() dIArr=stokes[5].copy() dQArr=stokes[6].copy() dUArr=stokes[7].copy() dVArr=stokes[8].copy() freqArr_Hz=freqArr*1e6 lamArr_m=phys_const.speed_of_light/freqArr_Hz # convert to wavelength in m lambdaSqArr_m2=lamArr_m**2 if normed is True: dQArr=IArr*np.sqrt((dQArr/QArr)**2+(dIArr/IArr)**2) dUArr=IArr*np.sqrt((dUArr/UArr)**2+(dIArr/IArr)**2) QArr/=IArr UArr/=IArr dQUArr = (dQArr + dUArr)/2.0 if weight is True: weightArr = 1.0 / np.power(dQUArr, 2.0) else: weightArr = np.ones(freqArr_Hz.shape, dtype=float) dFDFth = np.sqrt( np.sum(weightArr**2 * dQUArr**2) / (np.sum(weightArr))**2 ) # check this equation!!! if nSamples is None: if upchan: nSamples=3 # sampling resolution of the FDF. else: nSamples=10 lambdaSqRange_m2 = (np.nanmax(lambdaSqArr_m2) - np.nanmin(lambdaSqArr_m2) ) fwhmRMSF_radm2 = 2.0 * np.sqrt(3.0) / lambdaSqRange_m2 # dLambdaSqMin_m2 = np.nanmin(np.abs(np.diff(lambdaSqArr_m2))) # dLambdaSqMax_m2 = np.nanmax(np.abs(np.diff(lambdaSqArr_m2))) dLambdaSqMed_m2 = np.nanmedian(np.abs(np.diff(lambdaSqArr_m2))) dPhi_radm2 = fwhmRMSF_radm2 / nSamples # phiMax_radm2 = np.sqrt(3.0) / dLambdaSqMax_m2 phiMax_radm2 = np.sqrt(3.0) / dLambdaSqMed_m2 # sets the RM limit that can be probed based on intrachannel depolarization phiMax_radm2 = max(phiMax_radm2,600) # Force the minimum phiMax if RM_lim is None: # Faraday depth sampling. Zero always centred on middle channel nChanRM = int(round(abs((phiMax_radm2 - 0.0) / dPhi_radm2)) * 2.0 + 1.0) startPhi_radm2 = - (nChanRM-1.0) * dPhi_radm2 / 2.0 stopPhi_radm2 = + (nChanRM-1.0) * dPhi_radm2 / 2.0 phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) else: startPhi_radm2 = RM_lim[0] stopPhi_radm2 = RM_lim[1] nChanRM = int(round(abs((((stopPhi_radm2-startPhi_radm2)//2) - 0.0) / dPhi_radm2)) * 2.0 + 1.0) phiArr_radm2 = np.linspace(startPhi_radm2, stopPhi_radm2, nChanRM) phiArr_radm2 = phiArr_radm2.astype(np.float) ### constructing FDF ### dirtyFDF, lam0Sq_m2 = do_rmsynth_planes( QArr, UArr, lambdaSqArr_m2, phiArr_radm2) RMSFArr, phi2Arr_radm2, fwhmRMSFArr, fitStatArr = get_rmsf_planes( lambdaSqArr_m2 = lambdaSqArr_m2, phiArr_radm2 = phiArr_radm2, weightArr=weightArr, mskArr=None, lam0Sq_m2=lam0Sq_m2, double = True) # routine needed for RM-cleaning FDF, lam0Sq_m2 = do_rmsynth_planes( QArr, UArr, lambdaSqArr_m2, phiArr_radm2, weightArr=weightArr, lam0Sq_m2=None, nBits=32, verbose=False) FDF_max=np.argmax(abs(FDF)) FDF_med=np.median(abs(FDF)) dFDFobs=np.median(abs(abs(FDF)-FDF_med)) / np.sqrt(np.pi/2) #MADFM definition of noise # dFDF_obs=np.nanstd(abs(FDF)) #std. definition of noise if noise_type is 'observed': FDF_snr=abs((abs(FDF)-FDF_med)/dFDFobs)/2 if noise_type is 'theory': FDF_snr=abs((abs(FDF)-FDF_med)/dFDFth)/2 mDict = measure_FDF_parms(FDF = dirtyFDF, phiArr = phiArr_radm2, fwhmRMSF = fwhmRMSF_radm2, dFDF = dFDFth, #FDF_noise lamSqArr_m2 = lambdaSqArr_m2, lam0Sq = lam0Sq_m2) RM_radm2_fit=mDict["phiPeakPIfit_rm2"] dRM_radm2_fit=mDict["dPhiPeakPIfit_rm2"] RM_radm2=phiArr_radm2[FDF_max] dRM_radm2=fwhmRMSF_radm2/(2*FDF_snr.max()) polAngle0Fit_deg=mDict["polAngle0Fit_deg"] dPolAngle0Fit_deg=mDict["dPolAngle0Fit_deg"] * np.sqrt(freqArr.size) # np.sqrt(freqArr.size) term corrects for band-average noise if cutoff is None: if diagnostic_plots: fig, ax = plt.subplots(2,1, figsize=(20,10)) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.95, wspace=0) ax[0].set_title('Faraday Dispersion Function') ax[0].plot(phiArr_radm2,FDF_snr) ax[0].set_xlim([phiArr_radm2.min(), phiArr_radm2.max()]) ax[1].plot(phiArr_radm2,FDF_snr) # ax[1].axvline(RM_radm2, color='k', ls=':', label=r'RM=%.2f $\pm$ %0.2f rad/m$^2$' %(RM_radm2,dRM_radm2)) ax[1].set_xlim(phiArr_radm2[FDF_max]-300,phiArr_radm2[FDF_max]+300) ax[1].set_xlabel('$\phi$ [rad/m$^2$]') fig.text(0.03, 0.5, 'Polarized Intensity [S/N]', va='center', rotation='vertical') # plt.legend(fontsize=20) # plt.tight_layout() if isinstance(diagnostic_plots, bool): plt.show() else: plot_name = "FDF.png" plt.savefig(os.path.join(diagnostic_plots, plot_name)) plt.close("all") return (RM_radm2_fit,RM_radm2,dRM_radm2_fit,dRM_radm2,polAngle0Fit_deg,dPolAngle0Fit_deg),(phiArr_radm2,FDF_snr) else: if noise_type is 'observed': cutoff_abs = dFDFobs*cutoff if noise_type is 'theory': cutoff_abs = dFDFth*cutoff cleanFDF, ccArr, iterCountArr, residFDF = do_rmclean_hogbom(dirtyFDF = FDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = fwhmRMSF_radm2, cutoff = cutoff_abs, # maxIter = maxIter, # gain = gain, # verbose = verbose, doPlots = True) FDF_max=np.argmax(abs(cleanFDF)) FDF_med=np.median(abs(cleanFDF)) dFDFobs=np.median(abs(abs(cleanFDF)-FDF_med)) / np.sqrt(np.pi/2) #MADFM definition of noise # dFDF_obs=np.nanstd(abs(FDF)) #std. definition of noise if noise_type is 'observed': FDF_snr_clean=abs((abs(cleanFDF)-FDF_med)/dFDFobs)/2 ccArr_snr=(abs(ccArr)/dFDFobs)/2 if noise_type is 'theory': FDF_snr_clean=abs((abs(cleanFDF)-FDF_med)/dFDFth)/2 ccArr_snr=(abs(ccArr)/dFDFth)/2 mDict = measure_FDF_parms(FDF = cleanFDF, phiArr = phiArr_radm2, fwhmRMSF = fwhmRMSF_radm2, dFDF = dFDFth, #FDF_noise lamSqArr_m2 = lambdaSqArr_m2, lam0Sq = lam0Sq_m2) RM_radm2_fit=mDict["phiPeakPIfit_rm2"] dRM_radm2_fit=mDict["dPhiPeakPIfit_rm2"] RM_radm2=phiArr_radm2[FDF_max] dRM_radm2=fwhmRMSF_radm2/(2*FDF_snr_clean.max()) polAngle0Fit_deg=mDict["polAngle0Fit_deg"] dPolAngle0Fit_deg=mDict["dPolAngle0Fit_deg"] * np.sqrt(freqArr.size) # np.sqrt(freqArr.size) term corrects for band-average noise if diagnostic_plots: fig, ax = plt.subplots(2,1, figsize=(20,10)) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.95, wspace=0) ax[0].set_title('Faraday Dispersion Function') ax[0].plot(phiArr_radm2,FDF_snr_clean, label='clean FDF') ax[0].plot(phiArr_radm2,FDF_snr, label='dirty FDF') ax[0].axhline(cutoff, ls='--', color='k', label='clean cutoff') ax[0].legend() ax[0].set_xlim([phiArr_radm2.min(), phiArr_radm2.max()]) ax[1].plot(phiArr_radm2,FDF_snr_clean, label='clean FDF') ax[1].plot(phiArr_radm2,FDF_snr, label='dirty FDF') ax[1].axhline(cutoff, ls='--', color='k',label='clean cutoff') ax[1].legend() ax[1].set_xlim(phiArr_radm2[FDF_max]-300,phiArr_radm2[FDF_max]+300) ax[1].set_xlabel('$\phi$ [rad/m$^2$]') fig.text(0.03, 0.5, 'Polarized Intensity [S/N]', va='center', rotation='vertical') if isinstance(diagnostic_plots, bool): plt.show() else: plot_name = "FDF.png" plt.savefig(os.path.join(diagnostic_plots, plot_name)) plt.close("all") fig, ax = plt.subplots(2,1,figsize=(20,10)) plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.95, wspace=0, hspace=0.0) ax[0].set_title('Faraday Dispersion Function') ax[0].plot(phi2Arr_radm2,RMSFArr, label='RMTF') ax[0].set_xlim([-300,300]) ax[0].xaxis.set_ticklabels([]) ax[0].legend() ax[1].plot(phiArr_radm2,FDF_snr_clean, label='clean FDF') ax[1].bar(phiArr_radm2,ccArr_snr, color='g', label='clean components') ax[1].legend() ax[1].set_xlim(phiArr_radm2[FDF_max]-300,phiArr_radm2[FDF_max]+300) ax[1].set_xlabel('$\phi$ [rad/m$^2$]') fig.text(0.03, 0.5, 'Polarized Intensity [S/N]', va='center', rotation='vertical') # plt.legend(fontsize=20) # plt.tight_layout() if isinstance(diagnostic_plots, bool): plt.show() else: plot_name = "FDF_clean.png" plt.savefig(os.path.join(diagnostic_plots, plot_name)) plt.close("all") return (RM_radm2_fit,RM_radm2,dRM_radm2_fit,dRM_radm2,polAngle0Fit_deg,dPolAngle0Fit_deg),(phiArr_radm2,FDF_snr_clean)
def run_rmclean(fdfFile, rmsfFile, weightFile, rmSynthFile, cutoff, maxIter=1000, gain=0.1, prefixOut="", outDir="", nBits=32, showPlots=False, doAnimate=False): """ Run RM-CLEAN on a complex FDF spectrum given a RMSF. """ # Default data types dtFloat = "float" + str(nBits) dtComplex = "complex" + str(2 * nBits) # Read the frequency vector for the lambda^2 array freqArr_Hz, weightArr = np.loadtxt(weightFile, unpack=True, dtype=dtFloat) lambdaSqArr_m2 = np.power(C / freqArr_Hz, 2.0) # Read the FDF from the ASCII file phiArr_radm2, FDFreal, FDFimag = np.loadtxt(fdfFile, unpack=True, dtype=dtFloat) dirtyFDF = FDFreal + 1j * FDFimag # Read the RMSF from the ASCII file phi2Arr_radm2, RMSFreal, RMSFimag = np.loadtxt(rmsfFile, unpack=True, dtype=dtFloat) RMSFArr = RMSFreal + 1j * RMSFimag # Read the RM-synthesis parameters from the JSON file mDictS = json.load(open(rmSynthFile, "r")) # If the cutoff is negative, assume it is a sigma level print "Expected RMS noise = %.4g mJy/beam/rmsf" % \ (mDictS["dFDFth_Jybm"]*1e3) if cutoff < 0: print "Using a sigma cutoff of %.1f." % (-1 * cutoff), cutoff = -1 * mDictS["dFDFth_Jybm"] * cutoff print "Absolute value = %.3g" % cutoff else: print "Using an absolute cutoff of %.3g (%.1f x expected RMS)." % \ (cutoff, cutoff/mDictS["dFDFth_Jybm"]) startTime = time.time() # Perform RM-clean on the spectrum cleanFDF, ccArr, iterCountArr = \ do_rmclean_hogbom(dirtyFDF = dirtyFDF, phiArr_radm2 = phiArr_radm2, RMSFArr = RMSFArr, phi2Arr_radm2 = phi2Arr_radm2, fwhmRMSFArr = np.array(mDictS["fwhmRMSF"]), cutoff = cutoff, maxIter = maxIter, gain = gain, verbose = False, doPlots = showPlots, doAnimate = doAnimate) cleanFDF #/= 1e3 ccArr #/= 1e3 # ALTERNATIVE RM_CLEAN CODE ----------------------------------------------# ''' cleanFDF, ccArr, fwhmRMSF, iterCount = \ do_rmclean(dirtyFDF = dirtyFDF, phiArr = phiArr_radm2, lamSqArr = lamSqArr_m2, cutoff = cutoff, maxIter = maxIter, gain = gain, weight = weightArr, RMSFArr = RMSFArr, RMSFphiArr = phi2Arr_radm2, fwhmRMSF = mDictS["fwhmRMSF"], doPlots = True) ''' #-------------------------------------------------------------------------# endTime = time.time() cputime = (endTime - startTime) print "> RM-CLEAN completed in %.4f seconds." % cputime # Measure the parameters of the deconvolved FDF mDict = measure_FDF_parms( FDF=cleanFDF, phiArr=phiArr_radm2, fwhmRMSF=mDictS["fwhmRMSF"], #dFDF = mDictS["dFDFth_Jybm"], lamSqArr_m2=lambdaSqArr_m2, lam0Sq=mDictS["lam0Sq_m2"]) mDict["cleanCutoff"] = cutoff mDict["nIter"] = int(iterCountArr) # Measure the complexity of the clean component spectrum mDict["mom2CCFDF"] = measure_fdf_complexity(phiArr=phiArr_radm2, FDF=ccArr) # Save the deconvolved FDF and CC model to ASCII files print "Saving the clean FDF and component model to ASCII files." outFile = prefixOut + "_FDFclean.dat" print "> %s" % outFile np.savetxt(outFile, zip(phiArr_radm2, cleanFDF.real, cleanFDF.imag)) outFile = prefixOut + "_FDFmodel.dat" print "> %s" % outFile np.savetxt(outFile, zip(phiArr_radm2, ccArr)) # Save the RM-clean measurements to a "key=value" text file print "Saving the measurements on the FDF in 'key=val' and JSON formats." outFile = prefixOut + "_RMclean.dat" print "> %s" % outFile FH = open(outFile, "w") for k, v in mDict.iteritems(): FH.write("%s=%s\n" % (k, v)) FH.close() outFile = prefixOut + "_RMclean.json" print "> %s" % outFile json.dump(mDict, open(outFile, "w")) # Print the results to the screen print print '-' * 80 print 'RESULTS:\n' print 'FWHM RMSF = %.4g rad/m^2' % (mDictS["fwhmRMSF"]) print 'Pol Angle = %.4g (+/-%.4g) deg' % (mDict["polAngleFit_deg"], mDict["dPolAngleFit_deg"]) print 'Pol Angle 0 = %.4g (+/-%.4g) deg' % (mDict["polAngle0Fit_deg"], mDict["dPolAngle0Fit_deg"]) print 'Peak FD = %.4g (+/-%.4g) rad/m^2' % (mDict["phiPeakPIfit_rm2"], mDict["dPhiPeakPIfit_rm2"]) print 'freq0_GHz = %.4g ' % (mDictS["freq0_Hz"] / 1e9) print 'I freq0 = %.4g mJy/beam' % (mDictS["Ifreq0_mJybm"]) print 'Peak PI = %.4g (+/-%.4g) mJy/beam' % ( mDict["ampPeakPIfit_Jybm"] * 1e3, mDict["dAmpPeakPIfit_Jybm"] * 1e3) print 'QU Noise = %.4g mJy/beam' % (mDictS["dQU_Jybm"] * 1e3) print 'FDF Noise (measure) = %.4g mJy/beam' % (mDict["dFDFms_Jybm"] * 1e3) print 'FDF SNR = %.4g ' % (mDict["snrPIfit"]) print print '-' * 80 # Pause to display the figure if showPlots or doAnimate: print "Press <RETURN> to exit ...", raw_input()