예제 #1
0
def isExist(dsid):

    #to see the file if exists
    exist = 1
    if gSystem.AccessPathName("%s%s" % (prepath, dsid), kFileExists) == False:
        exist = 1
    else:
        exist = 0
    return exist
예제 #2
0
def Skim(dsid, treename):
 
  #to see the file if exists
  if gSystem.AccessPathName("%s%s" % (prepath, dsid), kFileExists) == False:
  
     f1=TFile("%s%s" % (prepath, dsid))
     tree=f1.Get(treename)

     #skim here
     outputname="%s%s" % (outpath, dsid)
     f2=TFile("%s%s" % (outpath, dsid),"update")
     outtree = tree.CopyTree("passEventCleaning && (onelep_type||dilep_type||trilep_type||quadlep_type) && ((RunYear==2015 && (HLT_mu20_iloose_L1MU15 || HLT_mu50 || HLT_e24_lhmedium_L1EM20VH || HLT_e60_lhmedium || HLT_e120_lhloose )) || (RunYear==2016 && ( HLT_mu26_ivarmedium || HLT_mu50 || HLT_e26_lhtight_nod0_ivarloose || HLT_e60_lhmedium_nod0 || HLT_e140_lhloose_nod0))|| (RunYear==2017 && (HLT_mu26_ivarmedium || HLT_mu50 || HLT_e26_lhtight_nod0_ivarloose || HLT_e60_lhmedium_nod0 ||HLT_e140_lhloose_nod0 ))||(RunYear==2015&&(HLT_2e12_lhloose_L12EM10VH||HLT_e17_lhloose_mu14||HLT_mu18_mu8noL1)) ||(RunYear==2016&&(HLT_2e17_lhvloose_nod0||HLT_e17_lhloose_nod0_mu14||HLT_mu22_mu8noL1))||(RunYear==2017&&(HLT_2e17_lhvloose_nod0||HLT_e17_lhloose_nod0_mu14||HLT_mu22_mu8noL1))) && onelep_type>0 && ( abs(lep_ID_0)==13 ||((abs(lep_ID_0)==11)&&lep_isTightLH_0)) &&lep_isTrigMatch_0 && lep_Pt_0>27e3 && lep_isolationFixedCutLoose_0 && nTaus_OR_Pt25==2 &&tau_tight_0 && tau_tight_1 && nJets_OR_T>=3 && nJets_OR_T_MV2c10_70>=1 && tau_tagWeightBin_1<4 && tau_tagWeightBin_0 <4") #skip MVA1l2tau_weight>0.5 tau_charge_0*tau_charge_1<0
     outtree.Write()
     f2.Close()
  else:
     print "Error: %s does not exists" % dsid
def parse_drawer_options(options):
    # Create outdir if necessary
    if not options.outdir.endswith("/"):
        options.outdir += "/"
    if gSystem.AccessPathName(options.outdir):
        gSystem.mkdir(options.outdir)

    # Make input file list
    if not options.infile.endswith(".root") and not options.infile.endswith(
            ".txt"):
        raise ValueError("infile must be .root file or .txt file")

    if options.infile.endswith(".root"):
        # Create a temporary file with one line
        with tempfile.NamedTemporaryFile() as infile:
            infile.write(options.infile)
            infile.flush()
            options.tfilecoll = TFileCollection("fc", "", infile.name)
    else:
        options.tfilecoll = TFileCollection("fc", "", options.infile)

    # Batch mode
    if options.batch:
        gROOT.SetBatch(True)

    # Trigger tower parameter space
    if options.tower != 99:
        ieta = options.tower / 8
        iphi = options.tower % 8
        options.etamin = -2.2 + (4.4 / 6) * ieta
        options.etamax = -2.2 + (4.4 / 6) * (ieta + 1)
        if iphi < 4:
            options.phimin = (2 * pi / 8) * iphi
            options.phimax = (2 * pi / 8) * (iphi + 1)
        else:
            options.phimin = -2 * pi - pi + (2 * pi / 8) * iphi
            options.phimax = -2 * pi - pi + (2 * pi / 8) * (iphi + 1)
        options.ptmin = 2.
        options.ptmax = 2000.
        options.vzmin = -15.
        options.vzmax = +15.
예제 #4
0
def main():

    try:
        # retrive command line options
        shortopts  = "w:m:i:j:f:g:t:o:a:vgh?"
        longopts   = ["weight_fold=", "methods=", "inputfilesig=", "inputfilebkg=", "friendinputfilesig=", "friendinputfilebkg=", "inputtrees=", "outputfile=", "verbose", "gui", "help", "usage"]
        opts, args = getopt.getopt( sys.argv[1:], shortopts, longopts )

    except getopt.GetoptError:
        # print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infnameSig     = DEFAULT_INFNAMESIG
    infnameBkg     = DEFAULT_INFNAMEBKG
    friendfnameSig = DEFAULT_FRIENDNAMESIG
    friendfnameBkg = DEFAULT_FRIENDNAMEBKG
    treeNameSig    = DEFAULT_TREESIG
    treeNameBkg    = DEFAULT_TREEBKG
    outfname       = DEFAULT_OUTFNAME
    methods        = DEFAULT_METHODS
    weight_fold    = "weights"
    verbose        = False
    gui            = False
    addedcuts      = ""
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-w", "--weight_fold"):
            weight_fold = a
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-i", "--inputfilesig"):
            infnameSig = a
        elif o in ("-j", "--inputfilebkg"):
            infnameBkg = a
        elif o in ("-f", "--friendinputfilesig"):
            friendfnameSig = a
        elif o in ("-g", "--friendinputfilebkg"):
            friendfnameBkg = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-a", "--addedcuts"):
            addedcuts = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit( ' ' )
            trees.sort()
            trees.reverse()
            if len(trees)-trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)
            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True
        elif o in ("-g", "--gui"):
            gui = True

    # Print methods
    mlist = methods.replace(' ',',').split(',')
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Print the file
    print "Using file " + infnameSig + " for signal..."
    print "Using file " + infnameBkg + " for background..."

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut
    
    # check ROOT version, give alarm if 5.18
    print "ROOT version is " + str(gROOT.GetVersionCode())
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)
    
    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    gROOT.SetMacroPath( "./" )
## SO I TAKE DEFAULT FORM ROOT#    gROOT.Macro       ( "./TMVAlogon.C" )    
#!    gROOT.LoadMacro   ( "./TMVAGui.C" )
 
   
    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Output file
    outputFile = TFile( outfname, 'RECREATE' )
    
    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in 
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory( "TMVAClassification", outputFile, 
                            "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" )

    # Set verbosity
    factory.SetVerbose( verbose )
    
    # If you wish to modify default settings 
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    (TMVA.gConfig().GetIONames()).fWeightFileDir = weight_fold;

    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
    factory.AddVariable( "dR_l1l2", "dR_l1l2", "", 'F' )
    factory.AddVariable( "dR_b1b2", "dR_b1b2", "", 'F' )
    factory.AddVariable( "dR_bl", "dR_bl", "", 'F' )
    factory.AddVariable( "dR_l1l2b1b2", "dR_l1l2b1b2", "", 'F' )
    factory.AddVariable( "MINdR_bl", "MINdR_bl", "", 'F' )
    factory.AddVariable( "dphi_l1l2b1b2", "dphi_l1l2b1b2", "", 'F' )
    factory.AddVariable( "mass_l1l2", "mass_l1l2", "", 'F' )
    factory.AddVariable( "mass_b1b2", "mass_b1b2", "", 'F' )
    factory.AddVariable( "mass_trans", "mass_trans", "", 'F' )
    factory.AddVariable( "MT2", "MT2", "", 'F' )
    factory.AddVariable( "pt_b1b2", "pt_b1b2", "", 'F' )
    #factory.AddVariable( "MMC_h2mass_MaxBin", "MMC_h2mass_MaxBin", "", 'F' )
    #factory.AddVariable( "MMC_h2mass_RMS", "MMC_h2mass_RMS", "", 'F' )
    #factory.AddVariable( "MMC_h2mass_prob", "MMC_h2mass_prob", "", 'F' )

    # You can add so-called "Spectator variables", which are not used in the MVA training, 
    # but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the 
    # input variables, the response values of all trained MVAs, and the spectator variables
    # factory.AddSpectator( "spec1:=var1*2",  "Spectator 1", "units", 'F' )
    # factory.AddSpectator( "spec2:=var1*3",  "Spectator 2", "units", 'F' )

    # Read input data
    if gSystem.AccessPathName( infnameSig ) != 0 or gSystem.AccessPathName( infnameBkg ): gSystem.Exec( "wget http://root.cern.ch/files/" + infname )
        
    inputSig = TFile.Open( infnameSig )
    inputBkg = TFile.Open( infnameBkg )

    # Get the signal and background trees for training
    signal      = inputSig.Get( treeNameSig )
    background  = inputBkg.Get( treeNameBkg )

    ##signal.AddFriend( "eleIDdir/isoT1 = eleIDdir/T1", friendfnameSig )
    ##background.AddFriend( "eleIDdir/isoT1 = eleIDdir/T1", friendfnameBkg )

    # Global event weights (see below for setting event-wise weights)
    signalWeight     = 1.
    backgroundWeight = 1.

#I don't think there's a general answer to this. The safest 'default'
#is to use the envent weight such that you have equal amounts of signal
#and background
#for the training, otherwise for example:  if you look for a rare
#signal and you use the weight to scale the number of events according
#to the expected ratio of signal and background
#according to the luminosity... the classifier sees hardly any signal
#events and "thinks" .. Oh I just classify everything background and do
#a good job!
#
#One can try to 'optimize' the training a bit more in  either 'high
#purity' or 'high efficiency' by choosing different weights, but as I
#said, there's no fixed rule. You'd have
#to 'try' and see if you get better restults by playing with the weights.

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    factory.AddSignalTree    ( signal,     signalWeight     )
    factory.AddBackgroundTree( background, backgroundWeight )

    # To give different trees for training and testing, do as follows:
    #    factory.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    factory.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )
    
    # Use the following code instead of the above two or four lines to add signal and background 
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input 
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #    
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #    
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================    
            
    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : factory.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: factory.SetBackgroundWeightExpression("weight1*weight2");

    # Apply additional cuts on the signal and background sample. 
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )
    #mycutSig = TCut( "nu1and2_diBaxis_t>-900 && met_diBaxis_t>-900&& hasb1jet && hasb2jet && hasMET && hasGenMET && hasdRljet && hastwomuons" ) 
    mycutSig = TCut( addedcuts ) 
    #mycutBkg = TCut( "event_n%2!=0 && " + addedcuts ) 
    mycutBkg = TCut( addedcuts ) 
    #mycutBkg = TCut( "nu1and2_diBaxis_t>-900 && met_diBaxis_t>-900&& hasb1jet && hasb2jet && hasMET && hasGenMET && hasdRljet && hastwomuons" ) 

    print mycutSig

    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    factory.PrepareTrainingAndTestTree( mycutSig, mycutBkg,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation
    if "Cuts" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "Cuts",
                            "!H:!V:FitMethod=MC:EffSel:VarProp[0]=FMax:VarProp[1]=FMin" )

    if "CutsD" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsD",
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" )

    if "CutsPCA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsPCA",
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" )

    if "CutsGA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsGA",
                            "H:!V:FitMethod=GA:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95:VarProp[0]=FMin:VarProp[1]=FMax" )

    if "CutsSA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsSA",
                            "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" )

    # Likelihood ("naive Bayes estimator")
    if "Likelihood" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "Likelihood",
                            "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" )

    # Decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodD",
                            "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" )

    # PCA-transformed likelihood
    if "LikelihoodPCA" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodPCA",
                            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" ) 

    # Use a kernel density estimator to approximate the PDFs
    if "LikelihoodKDE" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodKDE",
                            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" ) 

    # Use a variable-dependent mix of splines and kernel density estimator
    if "LikelihoodMIX" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodMIX",
                            "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" ) 

    # Test the multi-dimensional probability density estimator
    # here are the options strings for the MinMax and RMS methods, respectively:
    #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
    #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
    if "PDERS" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERS",
                            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" )

    if "PDERSD" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERSD",
                            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" )

    if "PDERSPCA" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERSPCA",
                             "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" )

   # Multi-dimensional likelihood estimator using self-adapting phase-space binning
    if "PDEFoam" in mlist:
        factory.BookMethod( TMVA.Types.kPDEFoam, "PDEFoam",
                            "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" )

    if "PDEFoamBoost" in mlist:
        factory.BookMethod( TMVA.Types.kPDEFoam, "PDEFoamBoost",
                            "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" )

    # K-Nearest Neighbour classifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod( TMVA.Types.kKNN, "KNN",
                            "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" )

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod( TMVA.Types.kHMatrix, "HMatrix", "!H:!V" )

    # Linear discriminant (same as Fisher discriminant)
    if "LD" in mlist:
        factory.BookMethod( TMVA.Types.kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" )

    # Fisher discriminant (same as LD)
    if "Fisher" in mlist:
        factory.BookMethod( TMVA.Types.kFisher, "Fisher", "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" )

    # Fisher with Gauss-transformed input variables
    if "FisherG" in mlist:
        factory.BookMethod( TMVA.Types.kFisher, "FisherG", "H:!V:VarTransform=Gauss" )

    # Composite classifier: ensemble (tree) of boosted Fisher classifiers
    if "BoostedFisher" in mlist:
        factory.BookMethod( TMVA.Types.kFisher, "BoostedFisher", 
                            "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2" )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MC",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );

    if "FDA_GA" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_GA",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );

    if "FDA_SA" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_SA",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );

    if "FDA_MT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

    if "FDA_GAMT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_GAMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

    if "FDA_MCMT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MCMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod( TMVA.Types.kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" )

    if "MLPBFGS" in mlist:
        factory.BookMethod( TMVA.Types.kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" )

    if "MLPBNN" in mlist:
        factory.BookMethod( TMVA.Types.kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ) # BFGS training with bayesian regulators

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod( TMVA.Types.kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ) # n_cycles:#nodes:#nodes:...  

    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod( TMVA.Types.kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ) #n_cycles:#nodes:#nodes:...

    # Support Vector Machine
    if "SVM" in mlist:
        factory.BookMethod( TMVA.Types.kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" )

    # Boosted Decision Trees
    if "BDTG" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDTG",
                            "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5" )

    if "BDT" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDT",
                            "!H:!V:NTrees=850:nEventsMin=150:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" )

    if "BDTB" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDTB",
                            "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning" )

    if "BDTD" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDTD",
                            "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate" )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod( TMVA.Types.kRuleFit, "RuleFit",
                            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" )

    # --------------------------------------------------------------------------------------------------
            
    # ---- Now you can tell the factory to train, test, and evaluate the MVAs. 

    # Train MVAs
    factory.TrainAllMethods()
    
    # Test MVAs
    factory.TestAllMethods()
    
    # Evaluate MVAs
    factory.EvaluateAllMethods()    
    
    # Save the output.
    outputFile.Close()
    
    print "=== wrote root file %s\n" % outfname
    print "=== TMVAClassification is done!\n"
    
    # open the GUI for the result macros    
    if( gui ):
        gROOT.ProcessLine( "TMVAGui(\"%s\")" % outfname )
        # keep the ROOT thread running
        gApplication.Run() 
예제 #5
0
def main():

    try:
        # retrive command line options
        shortopts  = "m:i:t:o:vh?"
        longopts   = ["methods=", "inputfile=", "inputtrees=", "outputfile=", "verbose", "help", "usage"]
        opts, args = getopt.getopt( sys.argv[1:], shortopts, longopts )

    except getopt.GetoptError:
        # print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infname     = DEFAULT_INFNAME
    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    outfname    = DEFAULT_OUTFNAME
    methods     = DEFAULT_METHODS
    verbose     = False
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-i", "--inputfile"):
            infname = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit( ' ' )
            trees.sort()
            trees.reverse()
            if len(trees)-trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)
            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True

    # Print methods
    mlist = methods.replace(' ',',').split(',')
    print "=== TMVAnalysis: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut
    
    # check ROOT version, give alarm if 5.18 
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)
    
    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    gROOT.SetMacroPath( "../macros/" )
    gROOT.Macro       ( "../macros/TMVAlogon.C" )    
    gROOT.LoadMacro   ( "../macros/TMVAGui.C" )
    
    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Output file
    outputFile = TFile( outfname, 'RECREATE' )
    
    # Create instance of TMVA factory (see TMVA/macros/TMVAnalysis.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in 
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory( "TMVAnalysis", outputFile, "!V:!Silent:Color" )

    # Set verbosity
    factory.SetVerbose( verbose )
    
    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
    factory.AddVariable( "var1+var2", 'F' )
    factory.AddVariable( "var1-var2", 'F' )
    factory.AddVariable( "var3",      'F' )
    factory.AddVariable( "var4",      'F' )

    # Read input data
    if not gSystem.AccessPathName( infname ):
        input = TFile( infname )
    else:
        print "ERROR: could not access data file %s\n" % infname

    # Get the signal and background trees for training
    signal      = input.Get( treeNameSig )
    background  = input.Get( treeNameBkg )
    
    # Global event weights (see below for setting event-wise weights)
    signalWeight     = 1.0
    backgroundWeight = 1.0

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    factory.AddSignalTree    ( signal,     signalWeight     )
    factory.AddBackgroundTree( background, backgroundWeight )

    # To give different trees for training and testing, do as follows:
    #    factory.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    factory.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )
    
    # Use the following code instead of the above two or four lines to add signal and background 
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input 
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #    
    # ... *** please lookup code in TMVA/macros/TMVAnalysis.C ***
    #    
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================    
            
    # This would set individual event weights (the variables defined in the 
    # expression need to exist in the original TTree)
    #    for signal    : factory.SetSignalWeightExpression("weight1*weight2")
    #    for background: factory.SetBackgroundWeightExpression("weight1*weight2")

    # Apply additional cuts on the signal and background sample. 
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )
    mycutSig = TCut( "" ) 
    mycutBkg = TCut( "" ) 
    
    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    factory.PrepareTrainingAndTestTree( mycutSig, mycutBkg,
                                        "NSigTrain=3000:NBkgTrain=3000:SplitMode=Random:NormMode=NumEvents:!V" )

    # ... and alternative call to use a different number of signal and background training/test event is:
    # factory.PrepareTrainingAndTestTree( mycut, "NSigTrain=3000:NBkgTrain=3000:NSigTest=3000:NBkgTest=3000:SplitMode=Random:!V" )

    # --------------------------------------------------------------------------------------------------

    # Cut optimisation
    if "Cuts" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "Cuts", 
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" )

    if "CutsD" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsD", 
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" )

    if "CutsPCA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsPCA", 
                            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" )

    if "CutsGA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsGA",
                            "H:!V:FitMethod=GA:EffSel:Steps=30:Cycles=3:PopSize=100:SC_steps=10:SC_rate=5:SC_factor=0.95:VarProp=FSmart" )
   
    if "CutsSA" in mlist:
        factory.BookMethod( TMVA.Types.kCuts, "CutsSA",
                            "H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemperature=IncreasingAdaptive:InitialTemperature=1e+6:MinTemperature=1e-6:Eps=1e-10:UseDefaultScale" )
   
    # Likelihood
    if "Likelihood" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "Likelihood", 
                            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=10:NSmoothBkg[0]=10:NSmoothBkg[1]=10:NSmooth=10:NAvEvtPerBin=50" )

    # test the decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodD", 
                            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=10:NSmoothBkg[0]=10:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" )

    if "LikelihoodPCA" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodPCA", 
                            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=10:NSmoothBkg[0]=10:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" )
 
    # test the new kernel density estimator
    if "LikelihoodKDE" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodKDE", 
                            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" )

    # test the mixed splines and kernel density estimator (depending on which variable)
    if "LikelihoodMIX" in mlist:
        factory.BookMethod( TMVA.Types.kLikelihood, "LikelihoodMIX", 
                            "!H:!V:!TransformOutput:PDFInterpol[0]=KDE:PDFInterpol[1]=KDE:PDFInterpol[2]=Spline2:PDFInterpol[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" )

    # PDE - RS method
    if "PDERS" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERS", 
                            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" )
        # And the options strings for the MinMax and RMS methods, respectively:
        #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" 
        #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" 
        
    if "PDERSkNN" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERSkNN", 
                            "!H:!V:VolumeRangeMode=kNN:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" )

    if "PDERSD" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERSD", 
                            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" )

    if "PDERSPCA" in mlist:
        factory.BookMethod( TMVA.Types.kPDERS, "PDERSPCA", 
                            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" )
  
    # K-Nearest Neighbour class ifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod( TMVA.Types.kKNN, "KNN", 
                            "nkNN=400:TreeOptDepth=6:ScaleFrac=0.8:!UseKernel:!Trim" ) 

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod( TMVA.Types.kHMatrix, "HMatrix", "!H:!V" ) 
        
    # Fisher discriminant
    if "Fisher" in mlist:
        factory.BookMethod( TMVA.Types.kFisher, "Fisher", 
                            "H:!V:!Normalise:CreateMVAPdfs:Fisher:NbinsMVAPdf=50:NsmoothMVAPdf=1" )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MC",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" )
   
    if "FDA_GA" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_GA",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=100:Cycles=3:Steps=20:Trim=True:SaveBestGen=0" )

    if "FDA_MT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" )

    if "FDA_GAMT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_GAMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" )

    if "FDA_MCMT" in mlist:
        factory.BookMethod( TMVA.Types.kFDA, "FDA_MCMT",
                            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" )

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod( TMVA.Types.kMLP, "MLP", "H:!V:!Normalise:NeuronType=tanh:NCycles=200:HiddenLayers=N+1,N:TestRate=5" )

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod( TMVA.Types.kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=500:HiddenLayers=N+1,N"  ) # n_cycles:#nodes:#nodes:...  
        
    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod( TMVA.Types.kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ) # n_cycles:#nodes:#nodes:..
  
    # Support Vector Machines using three d ifferent Kernel types (Gauss, polynomial and linear)
    if "SVM_Gauss" in mlist:
        factory.BookMethod( TMVA.Types.kSVM, "SVM_Gauss", "Sigma=2:C=1:Tol=0.001:Kernel=Gauss" )
      
    if "SVM_Poly" in mlist:
        factory.BookMethod( TMVA.Types.kSVM, "SVM_Poly", "Order=4:Theta=1:C=0.1:Tol=0.001:Kernel=Polynomial" )
      
    if "SVM_Lin" in mlist:
        factory.BookMethod( TMVA.Types.kSVM, "SVM_Lin", "!H:!V:Kernel=Linear:C=1:Tol=0.001" ) 
        
    # Boosted Decision Trees (second one with decorrelation)
    if "BDT" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDT", 
                            "!H:!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=CostComplexity:PruneStrength=1.5" )
    if "BDTD" in mlist:
        factory.BookMethod( TMVA.Types.kBDT, "BDTD", 
                            "!H:!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=CostComplexity:PruneStrength=2.5:VarTransform=Decorrelate" )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod( TMVA.Types.kRuleFit, "RuleFit",
                            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" )

    # Friedman's RuleFit method, implementation by J. Friedman
    if "RuleFitJF" in mlist:
        factory.BookMethod( TMVA.Types.kRuleFit, "RuleFitJF",
                            "!V:RuleFitModule=RFFriedman:Model=ModRuleLinear:GDStep=0.01:GDNSteps=10000:GDErrScale=1.1:RFNendnodes=4" )
 
    # --------------------------------------------------------------------------------------------------
            
    # ---- Now you can tell the factory to train, test, and evaluate the MVAs. 

    # Train MVAs
    factory.TrainAllMethods()
    
    # Test MVAs
    factory.TestAllMethods()
    
    # Evaluate MVAs
    factory.EvaluateAllMethods()    
    
    # Save the output.
    outputFile.Close()
    
    print "=== wrote root file %s\n" % outfname
    print "=== TMVAnalysis is done!\n"
    
    # open the GUI for the result macros    
    gROOT.ProcessLine( "TMVAGui(\"%s\")" % outfname )
    
    # keep the ROOT thread running
    gApplication.Run() 
예제 #6
0
def TMVAClassification(methods,
                       sigfname,
                       bkgfname,
                       optname,
                       channel,
                       trees,
                       verbose=False):  #="DecayTree,DecayTree"
    # Print methods
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVAClassification: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Define trees
    trees = trees.split(",")
    if len(trees) - trees.count('') != 2:
        print "ERROR: need to give two trees (each one for signal and background)"
        print trees
        sys.exit(1)
    treeNameSig = trees[0]
    treeNameBkg = trees[1]

    # Print output file and directory
    outfname = "TMVA_%s_%s.root" % (channel, optname)
    myWeightDirectory = "weights_%s_%s" % (channel, optname)
    print "=== TMVAClassification: output will be written to:"
    print "=== %s" % outfname
    print "=== %s" % myWeightDirectory

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    #gROOT.SetMacroPath( "./" )
    #gROOT.Macro       ( "./tmva/test/TMVAlogon.C" )
    #gROOT.LoadMacro   ( "./tmva/test/TMVAGui.C" ) ###Is this really necessary??

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Setup TMVA
    TMVA.Tools.Instance()

    # Output file
    outputFile = TFile(outfname, 'RECREATE')

    # Create instance of TMVA factory (see TMVA/macros/TMVAClassification.C for more factory options)
    # All TMVA output can be suppressed by removing the "!" (not) in
    # front of the "Silent" argument in the option string
    factory = TMVA.Factory(
        "TMVAClassification", outputFile,
        "!V:!Silent:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification"
    )

    # Set verbosity
    factory.SetVerbose(verbose)

    # Load data
    dataloader = TMVA.DataLoader("dataset")

    # If you wish to modify default settings
    # (please check "src/Config.h" to see all available global options)
    #    gConfig().GetVariablePlotting()).fTimesRMS = 8.0
    (TMVA.gConfig().GetIONames()).fWeightFileDir = myWeightDirectory
    # Define the input variables that shall be used for the classifier training
    # note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
    # [all types of expressions that can also be parsed by TTree::Draw( "expression" )]

    print "*** Training on channel:"
    print "*** %s" % channel
    print "***"
    '''
    if channel == "1":
        #dataloader.AddVariable( "pplus_ProbNNp",                      "Prob(p^{+})",                             "",     'F' );
        #dataloader.AddVariable( "Kminus_ProbNNk",                     "Prob(K^{-})",                             "",     'F' );

        dataloader.AddVariable( "pplus_PT",                           "P_{T}(p^{+})",                             "MeV", 'F' );
        dataloader.AddVariable( "Kminus_PT",                          "P_{T}(K^{-})",                             "MeV", 'F' );
        dataloader.AddVariable( "gamma_PT",                           "P_{T}(#gamma)",                            "MeV", 'F' );
        dataloader.AddVariable( "Lambda_1520_0_PT",                   "P_{T}(#Lambda(1520))",                     "MeV", 'F' );
        dataloader.AddVariable( "B_PT",                               "P_{T}(#Lambda_{b})",                       "MeV", 'F' );

        dataloader.AddVariable( "beta:=(-gamma_P+Kminus_P+pplus_P)/(gamma_P+Kminus_P+pplus_P)","#beta",             "MeV", 'F' );
        dataloader.AddVariable( "MomCons1:=-B_P+gamma_P+Lambda_1520_0_P","P_{tot,1}",                               "MeV", 'F' );
        dataloader.AddVariable( "MomCons2:=-Lambda_1520_0_P+Kminus_P+pplus_P","P_{tot,2}",                          "MeV", 'F' );

        dataloader.AddVariable( "Sum_Kminus_p_eta:=atanh(pplus_PZ/pplus_P)+atanh(Kminus_PZ/Kminus_P)","#eta(K^{-})+#eta(p^{+})","MeV", 'F' );
        dataloader.AddVariable( "Diff_Kminus_p_eta:=atanh(Kminus_PZ/Kminus_P)-atanh(pplus_PZ/pplus_P)","#eta(K^{-})-#eta(p^{+})","MeV", 'F' );

        dataloader.AddVariable( "pplus_IPCHI2_OWNPV",                 "#chi^{2}_{IP}(p^{+})",                       ""  ,  'F' );
        dataloader.AddVariable( "Kminus_IPCHI2_OWNPV",                "#chi^{2}_{IP}(K^{-})",                       ""  ,  'F' );
        dataloader.AddVariable( "B_IPCHI2_OWNPV",                     "#chi^{2}_{IP}(#Lambda_{b})",                 ""  ,  'F' );
        #dataloader.AddVariable( "gamma_IPCHI2_OWNPV",                 "IP #chi^{2}(#gamma)",                       ""  ,  'F' );
        #dataloader.AddVariable( "Lambda_1520_0_IP_OWNPV",             "IP(#Lambda(1520))",                        "mm",  'F' );
        #dataloader.AddVariable( "Lambda_1520_0_IPCHI2_OWNPV",         "IP#chi^{2}(#Lambda(1520))",               "",    'F' );
        
        dataloader.AddVariable( "Lambda_1520_0_OWNPV_CHI2",           "#chi^{2}_{vertex}(#Lambda(1520))",           ""  ,  'F' );
        dataloader.AddVariable( "B_OWNPV_CHI2",                       "#chi^{2}_{vertex}(#Lambda_{b})",             ""  ,  'F' );
        dataloader.AddVariable( "B_DIRA_OWNPV",                       "DIRA(#Lambda_{b})",                          ""  ,  'F' );
        
        #dataloader.AddVariable( "Lambda_1520_0_FDCHI2_OWNPV",         "FD #chi^{2}(#Lambda(1520))",               "",    'F' );
        dataloader.AddVariable( "B_FDCHI2_OWNPV",                     "#chi^{2}_{FD}(#Lambda_{b})",                 "",    'F' );
    '''

    if channel == "2":
        dataloader.AddVariable("pplus_PT", "P_{T}(p^{+})", "MeV", 'F')
        dataloader.AddVariable("Kminus_PT", "P_{T}(K^{-})", "MeV", 'F')
        dataloader.AddVariable("gamma_PT", "P_{T}(#gamma)", "MeV", 'F')
        dataloader.AddVariable("Lambda_1520_0_PT", "P_{T}(#Lambda*)", "MeV",
                               'F')
        dataloader.AddVariable("B_PT", "P_{T}(#Lambda_{b})", "MeV", 'F')

        dataloader.AddVariable(
            "beta:=(-gamma_P+Kminus_P+pplus_P)/(gamma_P+Kminus_P+pplus_P)",
            "#beta", "", 'F')
        #ok
        #dataloader.AddVariable( "MomCons1:=-B_P+gamma_P+Lambda_1520_0_P","P_{tot,1}",                               "MeV", 'F' );#BDT learned Mass check1
        dataloader.AddVariable("MomCons2:=-Lambda_1520_0_P+Kminus_P+pplus_P",
                               "P_{tot,2}", "MeV", 'F')
        #ok

        #dataloader.AddVariable( "Sum_Kminus_p_eta:=atanh(pplus_PZ/pplus_P)+atanh(Kminus_PZ/Kminus_P)","#eta(K^{-})+#eta(p^{+})","", 'F' );#99correlationL_eta
        dataloader.AddVariable(
            "Diff_Kminus_p_eta:=atanh(Kminus_PZ/Kminus_P)-atanh(pplus_PZ/pplus_P)",
            "#eta(K^{-})-#eta(p^{+})", "", 'F')
        dataloader.AddVariable(
            "Lambda_1520_0_eta:=atanh(Lambda_1520_0_PZ/Lambda_1520_0_P)",
            "#eta(#Lambda*)", "", 'F')
        dataloader.AddVariable("gamma_eta:=atanh(gamma_PZ/gamma_P)",
                               "#eta(#gamma)", "", 'F')

        dataloader.AddVariable("pplus_IPCHI2_OWNPV", "#chi^{2}_{IP}(p^{+})",
                               "", 'F')
        #dataloader.AddVariable( "Kminus_IPCHI2_OWNPV",                "#chi^{2}_{IP}(K^{-})",                       ""  ,  'F' );
        dataloader.AddVariable("B_IPCHI2_OWNPV", "#chi^{2}_{IP}(#Lambda_{b})",
                               "", 'F')
        dataloader.AddVariable("Lambda_1520_0_IPCHI2_OWNPV",
                               "#chi^{2}_{IP}(#Lambda*)", "", 'F')

        dataloader.AddVariable("Lambda_1520_0_OWNPV_CHI2",
                               "#chi^{2}_{vertex}(#Lambda*)", "", 'F')
        dataloader.AddVariable("B_OWNPV_CHI2",
                               "#chi^{2}_{vertex}(#Lambda_{b})", "", 'F')
        #dataloader.AddVariable( "B_BMassFit_chi2/B_BMassFit_nDOF",    "#chi^{2}_{DTF}/n_{dof}",                     ""  ,  'F' );#BDT learned Mass check1
        #dataloader.AddVariable( "B_PVFit_chi2/B_PVFit_nDOF",          "#chi^{2}_{DTF}/n_{dof}",                     ""  ,  'F' );#put it out because array

        #dataloader.AddVariable( "B_DIRA_OWNPV",                       "DIRA(#Lambda_{b})",                          ""  ,  'F' ); #not used by BDT
        #dataloader.AddVariable( "Lambda_1520_0_DIRA_OWNPV",           "DIRA(#Lambda*)",                        ""  ,  'F' ); #not used
        #dataloader.AddVariable( "Lambda_1520_0_FDCHI2_OWNPV",         "FD #chi^{2}(#Lambda*)",               "",    'F' ); #not used
        #dataloader.AddVariable( "B_FDCHI2_OWNPV",                     "#chi^{2}_{FD}(#Lambda_{b})",                 "",    'F' ); #not used

    # Add Spectator Variables: not used for Training but written in final TestTree
    #dataloader.AddSpectator( "B_M",                                   "M(#Lambda_{b})",                           "MeV");
    #dataloader.AddSpectator( "Lambda_1520_0_M",                       "M(#Lambda*)",                         "MeV");

    # Read input data
    if gSystem.AccessPathName(sigfname) != 0:
        print "Can not find %s" % sigfname
    if gSystem.AccessPathName(bkgfname) != 0:
        print "Can not find %s" % bkgfname

    inputSig = TFile.Open(sigfname)
    inputBkg = TFile.Open(bkgfname)

    # Get the signal and background trees for training
    signal = inputSig.Get(treeNameSig)
    background = inputBkg.Get(treeNameBkg)

    # Global event weights (see below for setting event-wise weights)
    signalWeight = 1.0
    backgroundWeight = 1.0

    # ====== register trees ====================================================
    #
    # the following method is the prefered one:
    # you can add an arbitrary number of signal or background trees
    dataloader.AddSignalTree(signal, signalWeight)
    dataloader.AddBackgroundTree(background, backgroundWeight)

    # To give different trees for training and testing, do as follows:
    #    dataloader.AddSignalTree( signalTrainingTree, signalTrainWeight, "Training" )
    #    dataloader.AddSignalTree( signalTestTree,     signalTestWeight,  "Test" )

    # Use the following code instead of the above two or four lines to add signal and background
    # training and test events "by hand"
    # NOTE that in this case one should not give expressions (such as "var1+var2") in the input
    #      variable definition, but simply compute the expression before adding the event
    #
    #    # --- begin ----------------------------------------------------------
    #
    # ... *** please lookup code in TMVA/macros/TMVAClassification.C ***
    #
    #    # --- end ------------------------------------------------------------
    #
    # ====== end of register trees ==============================================

    # Set individual event weights (the variables must exist in the original TTree)
    #    for signal    : dataloader.SetSignalWeightExpression    ("weight1*weight2");
    #    for background: dataloader.SetBackgroundWeightExpression("weight1*weight2");
    #dataloader.SetBackgroundWeightExpression( "weight" )

    # Apply additional cuts on the signal and background sample.
    # example for cut: mycut = TCut( "abs(var1)<0.5 && abs(var2-0.5)<1" )

    mycutSig = TCut(
        ""
    )  #"pplus_ProbNNp>0.2 && Kminus_ProbNNk>0.2 && B_PT>4000 && Lambda_1520_0_PT>1500 && gamma_PT>3000 && pplus_PT>1000 && B_FDCHI2_OWNPV>100 && pplus_IPCHI2_OWNPV>50 && Kminus_IPCHI2_OWNPV>40")# B_BKGCAT==0 directly applied in root sample
    #print(sigfname + str( mycutSig ) + treeNameSig)

    mycutBkg = TCut(
        "B_M>6120"
    )  #"pplus_ProbNNp>0.2 && Kminus_ProbNNk>0.2 && B_PT>4000 && Lambda_1520_0_PT>1500 && gamma_PT>3000 && pplus_PT>1000 && B_FDCHI2_OWNPV>100 && pplus_IPCHI2_OWNPV>50 && Kminus_IPCHI2_OWNPV>40 && B_M>6120")#(B_M>6120 || B_M<5120)" )
    #print(bkgfname + str( mycutBkg ) + treeNameBkg)

    # Here, the relevant variables are copied over in new, slim trees that are
    # used for TMVA training and testing
    # "SplitMode=Random" means that the input events are randomly shuffled before
    # splitting them into training and test samples
    dataloader.PrepareTrainingAndTestTree(
        mycutSig, mycutBkg,
        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V"
    )

    # --------------------------------------------------------------------------------------------------

    # ---- Book MVA methods
    #
    # please lookup the various method configuration options in the corresponding cxx files, eg:
    # src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
    # it is possible to preset ranges in the option string in which the cut optimisation should be done:
    # "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

    # Cut optimisation
    if "Cuts" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "Cuts",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart")

    if "CutsD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsD",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate"
        )

    if "CutsPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsPCA",
            "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA"
        )

    if "CutsGA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsGA",
            "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95"
        )

    if "CutsSA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kCuts, "CutsSA",
            "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    # Likelihood ("naive Bayes estimator")
    if "Likelihood" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "Likelihood",
            "H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50"
        )

    # Decorrelated likelihood
    if "LikelihoodD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodD",
            "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate"
        )

    # PCA-transformed likelihood
    if "LikelihoodPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodPCA",
            "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA"
        )

    # Use a kernel density estimator to approximate the PDFs
    if "LikelihoodKDE" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodKDE",
            "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50"
        )

    # Use a variable-dependent mix of splines and kernel density estimator
    if "LikelihoodMIX" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLikelihood, "LikelihoodMIX",
            "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50"
        )

    # Test the multi-dimensional probability density estimator
    # here are the options strings for the MinMax and RMS methods, respectively:
    #      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
    #      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
    if "PDERS" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERS",
            "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600"
        )

    if "PDERSD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERSD",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate"
        )

    if "PDERSPCA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDERS, "PDERSPCA",
            "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA"
        )

# Multi-dimensional likelihood estimator using self-adapting phase-space binning
    if "PDEFoam" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDEFoam, "PDEFoam",
            "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T"
        )

    if "PDEFoamBoost" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kPDEFoam, "PDEFoamBoost",
            "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T"
        )

    # K-Nearest Neighbour classifier (KNN)
    if "KNN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kKNN, "KNN",
            "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim"
        )

    # H-Matrix (chi2-squared) method
    if "HMatrix" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kHMatrix, "HMatrix", "!H:!V")

    # Linear discriminant (same as Fisher discriminant)
    if "LD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kLD, "LD",
            "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher discriminant (same as LD)
    if "Fisher" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFisher, "Fisher",
            "H:!V:Fisher:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10"
        )

    # Fisher with Gauss-transformed input variables
    if "FisherG" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kFisher, "FisherG",
                           "H:!V:VarTransform=Gauss")

    # Composite classifier: ensemble (tree) of boosted Fisher classifiers
    if "BoostedFisher" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFisher, "BoostedFisher",
            "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2"
        )

    # Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
    if "FDA_MC" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MC",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1"
        )

    if "FDA_GA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_GA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1"
        )

    if "FDA_SA" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_SA",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale"
        )

    if "FDA_MT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch"
        )

    if "FDA_GAMT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_GAMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim"
        )

    if "FDA_MCMT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kFDA, "FDA_MCMT",
            "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1)(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20"
        )

    # TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
    if "MLP" in mlist:
        factory.BookMethod(
            dataloader,
            TMVA.Types.kMLP,
            "MLP",
            #"!H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+3:TestRate=5:!UseRegulator" )#Try
            "!H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator"
        )  #Old

    if "MLPBFGS" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kMLP, "MLPBFGS",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator"
        )

    if "MLPBNN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kMLP, "MLPBNN",
            "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator"
        )  # BFGS training with bayesian regulators

    # CF(Clermont-Ferrand)ANN
    if "CFMlpANN" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kCFMlpANN, "CFMlpANN",
                           "!H:!V:NCycles=2000:HiddenLayers=N+1,N"
                           )  # n_cycles:#nodes:#nodes:...

    # Tmlp(Root)ANN
    if "TMlpANN" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kTMlpANN, "TMlpANN",
            "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"
        )  # n_cycles:#nodes:#nodes:...

    # Support Vector Machine
    if "SVM" in mlist:
        factory.BookMethod(dataloader, TMVA.Types.kSVM, "SVM",
                           "Gamma=0.25:Tol=0.001:VarTransform=Norm")

    # Boosted Decision Trees
    if "BDTG" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTG",
            "!H:!V:NTrees=600:BoostType=Grad:Shrinkage=0.1:UseBaggedGrad:GradBaggingFraction=0.73:SeparationType=GiniIndex:nCuts=15:MaxDepth=2"
        )  #Settings3
        #"!H:!V:NTrees=300:BoostType=Grad:Shrinkage=0.11:UseBaggedGrad:GradBaggingFraction=0.73:SeparationType=GiniIndex:nCuts=17:MaxDepth=4" )#AnaNote
        #"!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedGrad:GradBaggingFraction=0.6:SeparationType=GiniIndex:nCuts=20:NNodesMax=5" )#Old

    if "BDT" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDT",
            "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning"
        )

    if "BDTB" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTB",
            "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning"
        )

    if "BDTD" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kBDT, "BDTD",
            "!H:!V:NTrees=400:nEventsMin=400:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:PruneMethod=NoPruning:VarTransform=Decorrelate"
        )

    # RuleFit -- TMVA implementation of Friedman's method
    if "RuleFit" in mlist:
        factory.BookMethod(
            dataloader, TMVA.Types.kRuleFit, "RuleFit",
            "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02"
        )

    # --------------------------------------------------------------------------------------------------

    # ---- Now you can tell the factory to train, test, and evaluate the MVAs.

    # Train MVAs
    print("FLAG 0")
    factory.TrainAllMethods()

    # Test MVAs
    factory.TestAllMethods()

    # Evaluate MVAs
    factory.EvaluateAllMethods()

    # Save the output.
    outputFile.Close()

    print "=== wrote root file %s\n" % outfname
    print "=== TMVAClassification is done!\n"

    # open the GUI for the result macros
    if not gROOT.IsBatch(): TMVA.TMVAGui(outfname)