예제 #1
0
def RatioCanvas(canvas_name,
                canvas_title,
                canw=500,
                canh=600,
                ratio_size_as_fraction=0.35):
    from ROOT import TCanvas, TPad
    c = TCanvas(canvas_name, canvas_title, canw, canh)
    c.cd()
    top = TPad("pad_top", "This is the top pad", 0.0, ratio_size_as_fraction,
               1.0, 1.0)
    top.SetBottomMargin(0.02 / float(top.GetHNDC()))
    top.SetTopMargin(0.04 / float(top.GetHNDC()))
    top.SetRightMargin(0.05)
    top.SetLeftMargin(0.16)
    top.SetFillColor(0)
    top.Draw()
    tobject_collector.append(top)

    c.cd()
    bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0, 1.0,
               ratio_size_as_fraction)
    bot.SetBottomMargin(0.11 / float(bot.GetHNDC()))
    bot.SetTopMargin(0.02 / float(bot.GetHNDC()))
    bot.SetRightMargin(0.05)
    bot.SetLeftMargin(0.16)
    bot.SetFillColor(0)
    bot.Draw()
    tobject_collector.append(bot)

    return c
예제 #2
0
    def __plot_quadrant_template2(self, h_oo, h_xo, h_ox, h_xx, alias, xlabel,
                                  plotname, doLogY):

        from TrigEgammaDevelopments.plots import AutoFixAxes
        from TrigEgammaDevelopments.helper.util import setBoxes
        from ROOT import TCanvas, gStyle, TLegend, kRed, kBlue, kGreen, kGray, kBlack, TLine, TPad, TLatex
        from TrigEgammaDevelopments.plots.AtlasStyle import AtlasStyle, atlas_template

        ratio_size_as_fraction = 0.35

        # Internal method
        def sortHistograms(hists):
            nevents = [o.GetEntries() for o in hists]
            from operator import itemgetter
            hist_sorted_index = sorted(enumerate(nevents), key=itemgetter(1))
            hist_sorted = list()
            for index in hist_sorted_index:
                hist_sorted.append(hists[index[0]])
            hist_sorted.reverse()
            return hist_sorted

        h_agree = h_xx + h_oo
        h_disagree = h_ox + h_xo
        hsum = h_agree + h_disagree

        gStyle.SetOptStat(111111)
        canvas = TCanvas('canvas', 'canvas', 2500, 1600)
        drawopt = 'pE1'
        canvas.cd()
        top = TPad("pad_top", "This is the top pad", 0.0,
                   ratio_size_as_fraction, 1.0, 1.0)
        top.SetBottomMargin(0.0)
        top.SetBottomMargin(0.06 / float(top.GetHNDC()))
        #top.SetTopMargin   (0.04/float(top.GetHNDC()))
        top.SetRightMargin(0.05)
        top.SetLeftMargin(0.16)
        top.SetFillColor(0)
        top.Draw(drawopt)

        canvas.cd()
        bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0, 1.0,
                   ratio_size_as_fraction)
        bot.SetBottomMargin(0.10 / float(bot.GetHNDC()))
        #bot.SetTopMargin   (0.02/float(bot.GetHNDC()))
        bot.SetTopMargin(0.0)
        bot.SetRightMargin(0.05)
        bot.SetLeftMargin(0.16)
        bot.SetFillColor(0)
        bot.Draw(drawopt)

        top.cd()

        h_agree.SetLineWidth(1)
        h_agree.SetLineColor(kBlack)
        h_agree.SetMarkerColor(kBlack)

        h_disagree.SetLineWidth(1)
        h_disagree.SetLineColor(kRed)
        h_disagree.SetMarkerColor(kRed)

        h_agree.SetName('Agreement')
        h_disagree.SetName('Disagreement')

        h_agree.SetStats(1)
        h_disagree.SetStats(1)
        # top
        h1 = sortHistograms([h_agree, h_disagree])
        # bot
        h2 = sortHistograms([h_agree.Clone(), h_disagree.Clone()])

        h1[0].GetXaxis().SetTitle('')
        h1[0].GetYaxis().SetTitle('Counts')

        #h1[0].GetYaxis().SetTitleOffset(0.5)
        #h1[0].GetYaxis().SetLabelSize(0.10)
        #h1[0].GetYaxis().SetTitleSize(0.10)

        #h1[0].GetXaxis().SetLabelSize(0.10)

        h1[0].Draw()
        for i in range(1, len(h1)):
            h1[i].Draw('sames')

        top.Update()
        setBoxes(top, h1)
        if doLogY:
            top.SetLogy()
            AutoFixAxes(top, False, False, 9000)
        else:
            AutoFixAxes(top, False, False, 2)

        bot.cd()
        if doLogY:
            bot.SetLogy()

        hsum.Sumw2()
        for h in h2:
            h.SetStats(0)
            h.Sumw2()
            h.Divide(h, hsum, 1., 1.)

        h2[0].GetYaxis().SetTitle('ratio')
        h2[0].GetXaxis().SetTitle(xlabel)
        h2[0].GetYaxis().SetTitleOffset(0.5)
        h2[0].GetYaxis().SetLabelSize(0.10)
        h2[0].GetYaxis().SetTitleSize(0.10)
        h2[0].GetXaxis().SetLabelSize(0.10)
        h2[0].GetXaxis().SetTitleSize(0.10)

        if not doLogY:
            h2[0].GetYaxis().SetRangeUser(0, 1.05)

        h2[0].Draw('ep1')
        for i in range(1, len(h2)):
            h2[i].Draw('sames')

        if doLogY:
            AutoFixAxes(bot, False, False, 1.1)

        # Loop over histograms
        canvas.SaveAs(plotname)
예제 #3
0
    def plot(self, **kw):

        from ROOT import kRed
        dirname = retrieve_kw(kw, 'dirname', 'Distribution')
        basecolor = retrieve_kw(kw, 'basecolor', kRed - 7)
        pdftitle = retrieve_kw(kw, 'pdftitle', 'Distributions')
        pdfoutput = retrieve_kw(kw, 'pdfoutput', 'distributions')

        import os
        # Organize outputs (.py and .pdf)
        prefix = self._basepath.split('/')[-1]
        localpath = os.getcwd() + '/' + dirname + '/' + prefix

        try:
            if not os.path.exists(localpath):
                os.makedirs(localpath)
        except:
            self._logger.warning('The director %s exist.', localpath)

        hist_names = [
            'et', 'eta', 'mu', 'nvtx', 'reta', 'eratio', 'weta2', 'rhad',
            'rphi', 'f1', 'f3'
        ]
        hist_labels = [
            'E_{T}', "#eta", "<#mu>", 'N_{vtx}', 'R_{eta}', 'E_{ratio}',
            'W_{eta2}', 'R_{had}', 'R_{phi}', 'f_{1}', 'f_{3}'
        ]

        from ROOT import TCanvas, TH1F, gStyle, TLegend, TPad
        from ROOT import kGreen, kRed, kBlue, kBlack, kGray, gPad, kAzure
        from TrigEgammaDevelopments.plots.AtlasStyle import AtlasStyle, atlas_template, setLegend1

        canvas1 = TCanvas('canvas1', 'canvas1', 2500, 1600)
        canvas1.Divide(4, 3)

        # Concatenate distributions for all regions
        def sumAllRegions(histname):
            h = None
            for etBinIdx in range(len(self._etBins) - 1):
                for etaBinIdx in range(len(self._etaBins) - 1):
                    binningname = ('et%d_eta%d') % (etBinIdx, etaBinIdx)
                    path = self._basepath + '/' + self.currentDir(
                    ) + '/' + binningname
                    if h:
                        h += self.storeSvc().histogram(path + '/' + histname)
                    else:
                        h = self.storeSvc().histogram(path + '/' +
                                                      histname).Clone()
            return h

        collector = []
        figures = {
            'rings': [],
            'rnnOutput': [],
            'ringer_profile': str(),
            'shower_shapes': str()
        }
        """
      Plot all shower shapes distributins
    """
        for idx, histname in enumerate(hist_names):
            self.setDir('Data')
            h_data = sumAllRegions(histname)
            self.setDir('MonteCarlo')
            h_mc = sumAllRegions(histname)
            #h_mc, h_data =  self.__scale_histograms(h_mc, h_data, 100, 0.01, 0.01)

            pad = canvas1.cd(idx + 1)
            gStyle.SetOptStat(110011)
            collector.append(pad)

            h_mc.SetFillColor(basecolor)
            h_mc.SetLineColor(basecolor)
            h_data.SetLineColor(kBlack)
            h_mc.Scale(1. / h_mc.GetMaximum())
            h_data.Scale(1. / h_data.GetMaximum())
            h_mc.Draw()
            h_data.Draw('same')
            leg1 = TLegend(0.2, 0.75, 0.5, 0.95)
            setLegend1(leg1)
            leg1.AddEntry(h_mc, 'MC')
            leg1.AddEntry(h_data, 'Data')
            leg1.Draw()
            collector[-1].Update()
            collector.append(h_mc)
            collector.append(h_data)
            collector.append(leg1)

        canvas1.SaveAs(localpath + '/shower_shapes_distributions.pdf')
        figures[
            'shower_shapes'] = localpath + '/shower_shapes_distributions.pdf'
        """
      Plot all shower ringer shapes for each ring
    """
        ratio_size_as_fraction = 0.35
        from RingerCore import progressbar

        rings_localpath = []

        for r in progressbar(range(100),
                             100,
                             step=1,
                             logger=self._logger,
                             prefix="Looping over rings (Plotting...) "):
            canvas2 = TCanvas('canvas2', 'canvas2', 2500, 1600)
            drawopt = 'pE1'
            canvas2.cd()
            top = TPad("pad_top", "This is the top pad", 0.0,
                       ratio_size_as_fraction, 1.0, 1.0)
            top.SetBottomMargin(0.0)
            top.SetBottomMargin(0.06 / float(top.GetHNDC()))
            #top.SetTopMargin   (0.04/float(top.GetHNDC()))
            top.SetRightMargin(0.05)
            top.SetLeftMargin(0.16)
            top.SetFillColor(0)
            top.Draw(drawopt)

            canvas2.cd()
            bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0, 1.0,
                       ratio_size_as_fraction)
            bot.SetBottomMargin(0.10 / float(bot.GetHNDC()))
            #bot.SetTopMargin   (0.02/float(bot.GetHNDC()))
            bot.SetTopMargin(0.0)
            bot.SetRightMargin(0.05)
            bot.SetLeftMargin(0.16)
            bot.SetFillColor(0)
            bot.Draw(drawopt)

            self.setDir('MonteCarlo')
            h_mc = sumAllRegions('rings/ring_' + str(r))
            self.setDir('Data')
            h_data = sumAllRegions('rings/ring_' + str(r))
            gStyle.SetOptStat(000000)

            h_mc, h_data = self.__scale_histograms(h_mc, h_data, 100, 0.0001,
                                                   0.025)
            h_mc.Scale(1. / h_mc.GetMaximum())
            h_data.Scale(1. / h_data.GetMaximum())

            from ROOT import TH1, kGray
            divide = ""
            drawopt = 'pE1'
            bot.cd()
            ref = h_mc.Clone()
            h = h_data.Clone()

            ref.Sumw2()
            h.Sumw2()
            ratioplot = h.Clone()
            ratioplot.Sumw2()
            ratioplot.SetName(h.GetName() + '_ratio')
            ratioplot.Divide(h, ref, 1., 1., '')
            ratioplot.SetFillColor(0)
            ratioplot.SetFillStyle(0)
            ratioplot.SetMarkerColor(1)
            ratioplot.SetLineColor(kGray)
            ratioplot.SetMarkerStyle(24)
            ratioplot.SetMarkerSize(1.2)
            ratioplot.GetYaxis().SetTitleSize(0.10)
            ratioplot.GetXaxis().SetTitleSize(0.10)
            ratioplot.GetXaxis().SetLabelSize(0.10)
            ratioplot.GetYaxis().SetLabelSize(0.10)
            ratioplot.GetYaxis().SetRangeUser(-1.6, 3.7)
            ratioplot.GetYaxis().SetTitleOffset(0.7)
            ratioplot.GetYaxis().SetTitle('Data/MC')
            ratioplot.GetXaxis().SetTitle('Ring #' + str(r + 1) + ' [MeV]')
            ratioplot.Draw(drawopt)
            from ROOT import TLine

            nbins = h_data.GetNbinsX()
            xmin = h_data.GetXaxis().GetBinLowEdge(1)
            xmax = h_data.GetXaxis().GetBinLowEdge(nbins + 1)
            l1 = TLine(xmin, 1, xmax, 1)
            l1.SetLineColor(kRed)
            l1.SetLineStyle(2)
            l1.Draw()
            bot.Update()

            top.cd()

            h_mc.SetFillColor(basecolor)
            h_mc.SetLineWidth(1)
            h_mc.SetLineColor(basecolor)
            h_data.SetLineColor(kBlack)
            h_data.SetLineWidth(1)
            h_mc.GetYaxis().SetTitle('Count')
            h_mc.Draw()
            h_data.Draw('same')

            leg1 = TLegend(0.8, 0.70, 0.95, 0.95)
            setLegend1(leg1)
            leg1.AddEntry(h_mc, 'MC')
            leg1.AddEntry(h_data, 'Data')
            leg1.Draw()
            atlas_template(top)
            top.Update()
            canvas2.SaveAs(localpath + '/distribution_ring_' + str(r + 1) +
                           '.pdf')
            figures['rings'].append(localpath + '/distribution_ring_' +
                                    str(r + 1) + '.pdf')
        """
      Plot ringer mean shapes
    """
        h_mean_data = TH1F('h_mean_data', '', 100, 0, 100)
        h_mean_mc = TH1F('h_mean_mc', '', 100, 0, 100)

        for bin in range(100):
            self.setDir('MonteCarlo')
            h_mc = sumAllRegions('rings/ring_' + str(bin))
            self.setDir('Data')
            h_data = sumAllRegions('rings/ring_' + str(bin))
            h_mean_data.SetBinContent(bin + 1, h_data.GetMean())
            h_mean_mc.SetBinContent(bin + 1, h_mc.GetMean())
        canvas3 = TCanvas('canvas3', 'canvas3', 2500, 1600)

        drawopt = 'pE1'
        canvas3.cd()
        top = TPad("pad_top", "This is the top pad", 0.0,
                   ratio_size_as_fraction, 1.0, 1.0)
        top.SetBottomMargin(0.0)
        top.SetBottomMargin(0.06 / float(top.GetHNDC()))
        #top.SetTopMargin   (0.04/float(top.GetHNDC()))
        top.SetRightMargin(0.05)
        top.SetLeftMargin(0.16)
        top.SetFillColor(0)
        top.Draw(drawopt)

        canvas3.cd()
        bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0, 1.0,
                   ratio_size_as_fraction)
        bot.SetBottomMargin(0.10 / float(bot.GetHNDC()))
        #bot.SetTopMargin   (0.02/float(bot.GetHNDC()))
        bot.SetTopMargin(0.0)
        bot.SetRightMargin(0.05)
        bot.SetLeftMargin(0.16)
        bot.SetFillColor(0)
        bot.Draw(drawopt)

        gStyle.SetOptStat(000000)
        from ROOT import TH1, kGray
        divide = ""
        drawopt = 'pE1'
        bot.cd()
        ref = h_mean_mc.Clone()
        h = h_mean_data.Clone()
        ref.Sumw2()
        h.Sumw2()
        ratioplot = h.Clone()
        ratioplot.Sumw2()
        ratioplot.SetName(h.GetName() + '_ratio')
        ratioplot.Divide(h, ref, 1., 1., '')
        ratioplot.SetFillColor(0)
        ratioplot.SetFillStyle(0)
        ratioplot.SetMarkerColor(1)
        ratioplot.SetLineColor(kGray)
        ratioplot.SetMarkerStyle(24)
        ratioplot.SetMarkerSize(1.2)
        ratioplot.GetYaxis().SetTitleSize(0.10)
        ratioplot.GetXaxis().SetTitleSize(0.10)
        ratioplot.GetXaxis().SetLabelSize(0.10)
        ratioplot.GetYaxis().SetLabelSize(0.10)
        ratioplot.GetYaxis().SetRangeUser(-1.6, 3.7)
        ratioplot.GetYaxis().SetTitleOffset(0.7)
        ratioplot.GetYaxis().SetTitle('Data/MC')
        ratioplot.GetXaxis().SetTitle('Rings')
        ratioplot.Draw(drawopt)
        from ROOT import TLine

        nbins = h_mean_data.GetNbinsX()
        xmin = h_mean_data.GetXaxis().GetBinLowEdge(1)
        xmax = h_mean_data.GetXaxis().GetBinLowEdge(nbins + 1)
        l1 = TLine(xmin, 1, xmax, 1)
        l1.SetLineColor(kRed)
        l1.SetLineStyle(2)
        l1.Draw()
        bot.Update()

        top.cd()
        h_mean_mc.SetFillColor(basecolor)
        h_mean_mc.SetLineWidth(1)
        h_mean_mc.SetLineColor(basecolor)
        h_mean_data.SetLineColor(kBlack)
        h_mean_data.SetLineWidth(1)
        #h_mean_mc.Scale( 1./h_mean_mc.GetEntries() )
        #h_mean_data.Scale( 1./h_mean_data.GetEntries() )

        if h_mean_mc.GetMaximum() > h_mean_data.GetMaximum():
            ymin = h_mean_mc.GetMinimum()
            ymax = h_mean_mc.GetMaximum()
            h_mean_mc.Draw()
            h_mean_mc.GetYaxis().SetTitle('E[Ring] MeV')
            h_mean_data.Draw('same')
        else:
            ymin = h_mean_data.GetMinimum()
            ymax = h_mean_data.GetMaximum()
            h_mean_data.GetYaxis().SetTitle('E[Ring] MeV')
            h_mean_data.Draw()
            h_mean_mc.Draw('same')

        h_mean_data.Draw('same')

        # prepare ringer lines
        def gen_line_90(x, ymin, ymax, text):
            from ROOT import TLine, TLatex
            ymax = 1.05 * ymax
            l = TLine(x, ymin, x, ymax)
            l.SetLineStyle(2)
            l.Draw()
            txt = TLatex()
            txt.SetTextFont(12)
            txt.SetTextAngle(90)
            txt.SetTextSize(0.04)
            txt.DrawLatex(x - 1, (ymax - ymin) / 2., text)
            return l, txt

        l_ps, t_ps = gen_line_90(8, ymin, ymax, 'presampler')
        l_em1, t_em1 = gen_line_90(72, ymin, ymax, 'EM.1')
        l_em2, t_em2 = gen_line_90(80, ymin, ymax, 'EM.2')
        l_em3, t_em3 = gen_line_90(88, ymin, ymax, 'EM.3')
        l_had1, t_had1 = gen_line_90(92, ymin, ymax, 'Had.1')
        l_had2, t_had2 = gen_line_90(96, ymin, ymax, 'Had.2')
        l_had3, t_had3 = gen_line_90(100, ymin, ymax, 'Had.3')

        leg1 = TLegend(0.8, 0.70, 0.95, 0.95)
        setLegend1(leg1)
        leg1.AddEntry(h_mean_mc, 'MC')
        leg1.AddEntry(h_mean_data, 'Data')
        leg1.Draw()
        atlas_template(top)
        top.Update()

        canvas3.SaveAs(localpath + '/ringer_profile.pdf')
        figures['ringer_profile'] = localpath + '/ringer_profile.pdf'
        """
      Plot all NN distributions for each calo region
    """
        for algname in self._discrList:
            for etBinIdx in range(len(self._etBins) - 1):
                for etaBinIdx in range(len(self._etaBins) - 1):

                    binningname = ('et%d_eta%d') % (etBinIdx, etaBinIdx)
                    path = self._basepath + '/MonteCarlo/' + binningname
                    h_mc = self.storeSvc().histogram(
                        path + '/' + algname +
                        '/discriminantVsMu').ProjectionX().Clone()
                    path = self._basepath + '/Data/' + binningname
                    h_data = self.storeSvc().histogram(
                        path + '/' + algname +
                        '/discriminantVsMu').ProjectionX().Clone()
                    h_mc.Rebin(10)
                    h_data.Rebin(10)
                    h_mc.Scale(1. / h_mc.GetMaximum())
                    h_data.Scale(1. / h_data.GetMaximum())

                    canvas4 = TCanvas('canvas4', 'canvas4', 2500, 1600)
                    drawopt = 'pE1'
                    canvas4.cd()
                    top = TPad("pad_top", "This is the top pad", 0.0,
                               ratio_size_as_fraction, 1.0, 1.0)
                    top.SetBottomMargin(0.0)
                    top.SetBottomMargin(0.06 / float(top.GetHNDC()))
                    #top.SetTopMargin   (0.04/float(top.GetHNDC()))
                    top.SetRightMargin(0.05)
                    top.SetLeftMargin(0.16)
                    top.SetFillColor(0)
                    top.Draw(drawopt)

                    canvas4.cd()
                    bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0,
                               1.0, ratio_size_as_fraction)
                    bot.SetBottomMargin(0.10 / float(bot.GetHNDC()))
                    bot.SetTopMargin(0.0)
                    bot.SetRightMargin(0.05)
                    bot.SetLeftMargin(0.16)
                    bot.SetFillColor(0)
                    bot.Draw(drawopt)

                    gStyle.SetOptStat(000000)

                    from ROOT import TH1, kGray
                    divide = ""
                    drawopt = 'pE1'
                    bot.cd()
                    ref = h_mc.Clone()
                    h = h_data.Clone()
                    ref.Sumw2()
                    h.Sumw2()
                    ratioplot = h.Clone()
                    ratioplot.Sumw2()
                    ratioplot.SetName(h.GetName() + '_ratio')
                    ratioplot.Divide(h, ref, 1., 1., '')
                    ratioplot.SetFillColor(0)
                    ratioplot.SetFillStyle(0)
                    ratioplot.SetMarkerColor(1)
                    ratioplot.SetLineColor(kGray)
                    ratioplot.SetMarkerStyle(24)
                    ratioplot.SetMarkerSize(1.2)
                    ratioplot.GetYaxis().SetTitleSize(0.10)
                    ratioplot.GetXaxis().SetTitleSize(0.10)
                    ratioplot.GetXaxis().SetLabelSize(0.10)
                    ratioplot.GetYaxis().SetLabelSize(0.10)
                    ratioplot.GetYaxis().SetRangeUser(-1.6, 3.7)
                    ratioplot.GetYaxis().SetTitleOffset(0.7)
                    ratioplot.GetYaxis().SetTitle('Data/MC')
                    ratioplot.GetXaxis().SetTitle(
                        'Neural Network (Discriminant)')
                    ratioplot.Draw(drawopt)
                    from ROOT import TLine

                    nbins = h_data.GetNbinsX()
                    xmin = h_data.GetXaxis().GetBinLowEdge(1)
                    xmax = h_data.GetXaxis().GetBinLowEdge(nbins + 1)
                    l1 = TLine(xmin, 1, xmax, 1)
                    l1.SetLineColor(kRed)
                    l1.SetLineStyle(2)
                    l1.Draw()
                    bot.Update()

                    top.cd()
                    h_mc.SetFillColor(basecolor)
                    h_mc.SetLineWidth(1)
                    h_mc.SetLineColor(basecolor)
                    h_data.SetLineColor(kBlack)
                    h_data.SetLineWidth(1)
                    h_mc.Scale(1. / h_mc.GetMaximum())
                    h_data.Scale(1. / h_data.GetMaximum())
                    h_mc.GetYaxis().SetTitle(
                        ('Counts (%s)') % (binningname.replace('_', ',')))
                    h_mc.Draw()
                    h_data.Draw('same')

                    leg1 = TLegend(0.8, 0.70, 0.95, 0.95)
                    setLegend1(leg1)
                    leg1.AddEntry(h_mc, 'MC')
                    leg1.AddEntry(h_data, 'Data')
                    leg1.Draw()
                    atlas_template(top)
                    top.Update()
                    canvas4.SaveAs(localpath + '/' + algname + '_rnnOutput_' +
                                   binningname + '.pdf')
                    figures['rnnOutput'].append(localpath + '/' + algname +
                                                '_rnnOutput_' + binningname +
                                                '.pdf')

        #from RingerCore.tex.TexAPI import *
        from RingerCore.tex.BeamerAPI import BeamerTexReportTemplate1, BeamerSection, BeamerMultiFigureSlide, BeamerFigureSlide
        with BeamerTexReportTemplate1(theme='Berlin',
                                      _toPDF=True,
                                      title=pdftitle,
                                      outputFile=pdfoutput,
                                      font='structurebold'):

            with BeamerSection(name='Shower Shapes'):
                BeamerMultiFigureSlide(
                    title='Shower Shapes (MC and Data)',
                    paths=[figures['shower_shapes']],
                    nDivWidth=1  # x
                    ,
                    nDivHeight=1  # y
                    ,
                    texts=None,
                    fortran=False,
                    usedHeight=0.8,
                    usedWidth=1.1)

            with BeamerSection(name='Ringer Shapes Profile'):
                BeamerMultiFigureSlide(
                    title='Ringer Profile (MC and Data)',
                    paths=[figures['ringer_profile']],
                    nDivWidth=1  # x
                    ,
                    nDivHeight=1  # y
                    ,
                    texts=None,
                    fortran=False,
                    usedHeight=0.8,
                    usedWidth=1.1)

            with BeamerSection(name='Ringer Shapes'):
                for s in range(4):
                    paths1 = [
                        path for path in figures['rings'][s * 25:s * 25 + 25]
                    ]
                    BeamerMultiFigureSlide(
                        title='Ringer Shapes (MC and Data)',
                        paths=paths1,
                        nDivWidth=5  # x
                        ,
                        nDivHeight=5  # y
                        ,
                        texts=None,
                        fortran=False,
                        usedHeight=0.8,
                        usedWidth=1.1)

            for algname in self._discrList:
                with BeamerSection(name=('%s Neural Network Output') %
                                   (algname.replace('_', '\_'))):
                    paths2 = []
                    for etBinIdx in range(len(self._etBins) - 1):
                        for etaBinIdx in range(len(self._etaBins) - 1):
                            binningname = ('et%d_eta%d') % (etBinIdx,
                                                            etaBinIdx)
                            paths2.append(localpath + '/' + algname +
                                          '_rnnOutput_' + binningname + '.pdf')
                    BeamerMultiFigureSlide(
                        title=algname.replace('_', '\_'),
                        paths=paths2,
                        nDivWidth=len(self._etaBins)  # x
                        ,
                        nDivHeight=len(self._etBins)  # y
                        ,
                        texts=None,
                        fortran=False,
                        usedHeight=1.0,
                        usedWidth=1.1)

        return StatusCode.SUCCESS
예제 #4
0
    def __plot_profiles_in_same_canvas(self, hist_objs, hist_names, legends,
                                       y_limits, **kwargs):

        legend_position = retrieve_kw(kwargs, 'legend_position',
                                      (0.36, 0.20, 0.66, 0.36))
        legend_prefix = retrieve_kw(kwargs, 'legend_prefix',
                                    'Z#rightarrowee, ')
        legend_header = retrieve_kw(kwargs, 'legend_header', 'Trigger step')
        ylabel = retrieve_kw(kwargs, 'ylabel', 'Trigger Efficiency')
        title = retrieve_kw(kwargs, 'title', 'Trigger Efficiency')
        oname = retrieve_kw(kwargs, 'oname', 'plot_efficiencys')
        column = retrieve_kw(kwargs, 'column', 2)
        doRatio = retrieve_kw(kwargs, 'doRatio', False)
        canvas_size = retrieve_kw(kwargs, 'canvas_size', (1800, 1500))
        # FIXME: This must be disable for now, there is some problem into the xaxis scale
        # The top and bot axis must be match!
        tobject_collector = []
        ratio_size_as_fraction = 0.35

        from ROOT import TCanvas, TLegend, TProfile, TPad
        rows = int(round(len(hist_objs) / float(column)))
        canvas = TCanvas('canvas', 'canvas', canvas_size[0], canvas_size[1])
        canvas.Divide(rows, column)
        leg_holder = []
        for index, hist_str in enumerate(hist_names):
            hists = hist_objs[hist_str]
            pad = canvas.cd(index + 1)
            # Force disable if != of 2
            if len(hists) != 2:
                doRatio = False

            if doRatio:
                drawopt = 'pE1'
                pad.cd()
                top = TPad("pad_top", "This is the top pad", 0.0,
                           ratio_size_as_fraction, 1.0, 1.0)
                top.SetBottomMargin(0.0)
                top.SetBottomMargin(0.06 / float(top.GetHNDC()))
                #top.SetTopMargin   (0.04/float(top.GetHNDC()))
                top.SetRightMargin(0.05)
                top.SetLeftMargin(0.16)
                top.SetFillColor(0)
                top.Draw(drawopt)
                tobject_collector.append(top)
                pad.cd()
                bot = TPad("pad_bot", "This is the bottom pad", 0.0, 0.0, 1.0,
                           ratio_size_as_fraction)
                bot.SetBottomMargin(0.10 / float(bot.GetHNDC()))
                #bot.SetTopMargin   (0.02/float(bot.GetHNDC()))
                bot.SetTopMargin(0.0)
                bot.SetRightMargin(0.05)
                bot.SetLeftMargin(0.16)
                bot.SetFillColor(0)
                bot.Draw(drawopt)
                tobject_collector.append(bot)

            if type(legend_prefix) is not list:
                legend_prefix = [legend_prefix] * len(legends)

            if doRatio:
                top.cd()

            leg = TLegend(legend_position[0], legend_position[1],
                          legend_position[2], legend_position[3])

            from AtlasStyle import setLegend1, atlas_template
            setLegend1(leg)
            leg.SetHeader(legend_header)

            for i, eff in enumerate(hists):
                eff.SetLineColor(self._curve_color[i])
                eff.SetMarkerColor(self._curve_color[i])
                eff.SetMarkerStyle(self._marker_style[i])
                if type(eff) is TProfile: eff.SetStats(0)
                leg.AddEntry(eff, legend_prefix[i] + legends[i], 'p')
                if i is 0: eff.Draw()
                else: eff.Draw('same')

            leg.SetTextSize(0.03)
            leg.SetBorderSize(0)
            leg.Draw()

            if doRatio:
                top.Modified()
                top.Update

            pad.Modified()
            pad.Update()

            from ROOT import TProfile, TEfficiency, kFALSE
            xmin = 0
            xmax = 999

            if type(hists[0]) is TProfile:
                hists[0].GetYaxis().SetRangeUser(y_limits[index][0],
                                                 y_limits[index][1])
            elif type(hists[0]) is TEfficiency:
                hists[0].GetPaintedGraph().GetYaxis().SetRangeUser(
                    y_limits[index][0], y_limits[index][1])
                hists[0].GetPaintedGraph().GetYaxis().SetTitle('A')

                # Fix the X axis
                nbins = hists[0].GetTotalHistogram().GetNbinsX()
                xmin = hists[0].GetTotalHistogram().GetXaxis().GetBinLowEdge(1)
                xmax = hists[0].GetTotalHistogram().GetXaxis().GetBinLowEdge(
                    nbins + 1)
                hists[0].GetPaintedGraph().GetXaxis().SetLimits(xmin, xmax)
            else:
                hists[0].GetYaxis().SetRangeUser(y_limits[index][0],
                                                 y_limits[index][1])

            pad.Modified()
            pad.Update()
            tobject_collector.append(leg)

            if doRatio:
                atlas_template(top, **kwargs)
                top.Update()
                from ROOT import TH1
                divide = ""
                drawopt = 'pE1'
                bot.cd()
                ref = hists[0].GetPassedHistogram().Clone()
                h = hists[1].GetPassedHistogram().Clone()
                #ref = hists[0].Clone()
                #h = hists[1].Clone()
                ref.Sumw2()
                h.Sumw2()
                ref.Divide(hists[0].GetTotalHistogram().Clone())
                h.Divide(hists[1].GetTotalHistogram().Clone())
                #ratioplot = TEfficiency(h,ref)
                ratioplot = h.Clone()
                ratioplot.Sumw2()
                ratioplot.SetName(h.GetName() + '_ratio')
                ratioplot.Divide(h, ref, 1., 1., '')
                #ratioplot.Divide(ref)
                ratioplot.SetFillColor(0)
                ratioplot.SetFillStyle(0)
                ratioplot.SetMarkerColor(1)
                ratioplot.SetLineColor(kBlack)
                ratioplot.SetMarkerStyle(24)
                ratioplot.SetMarkerSize(1.2)
                ratioplot.GetYaxis().SetTitle('trigger / ref')
                ratioplot.GetYaxis().SetTitleSize(0.10)
                ratioplot.GetXaxis().SetTitleSize(0.10)
                ratioplot.GetXaxis().SetLabelSize(0.10)
                ratioplot.GetYaxis().SetLabelSize(0.10)
                ratioplot.GetYaxis().SetRangeUser(0.9, 1.07)
                ratioplot.Draw(drawopt)
                tobject_collector.append(ratioplot)
                #atlas_template(bot, **kwargs)
                from ROOT import TLine
                l1 = TLine(xmin, 1, xmax, 1)
                l1.SetLineColor(kRed)
                l1.SetLineStyle(2)
                l1.Draw()
                tobject_collector.append(l1)
                bot.Update()
            else:
                atlas_template(pad, **kwargs)
            pad.Update()

        canvas.SaveAs(oname + '.pdf')