both_colors = [] both_data_names = [] special_histories = [] for i in range(0, len(data_paths)): special_histories.append(loadHistory(data_paths[i])) special_histories[i] = count_averages(special_histories[i], 'loss') both_colors.append(light_colors[i]) both_colors.append(hard_colors[i]) both_data_names.append(train_data_names[i]) both_data_names.append("validation " + val_data_names[i]) custom_title = 'Validation error in last epoch' import matplotlib.pyplot as plt plt, figure = boxplots_in_row(plt, special_histories, val_data_names) figure.set_size_inches((8, 6)) # Now check everything with the defaults: DPI = figure.get_dpi() print "DPI:", DPI DefaultSize = figure.get_size_inches() print "Default size in Inches", DefaultSize print "Which should result in a %i x %i Image" % (DPI * DefaultSize[0], DPI * DefaultSize[1]) save_plot(plt, True, out_folder) finally_show(plt)
import matplotlib.pyplot as plt #custom_title = 'Validation error averages' #plt = plot_only_averages(plt, special_histories, val_data_names, hard_colors, custom_title) #custom_title = 'Training error averages' #plt = plot_only_averages(plt, special_histories, train_data_names, light_colors, custom_title, just='train') custom_title = 'Validation and Training error averages, 299px' plt = plot_only_averages(plt, special_histories, both_data_names, both_colors, custom_title, just='both', save=[SAVE,out_folder_1]) # FIGURE 2 custom_title = 'Base model comparison, 299px' colors = [] for c in hard_colors: colors.append(c) colors.append(c) names_to_print = [] for i in val_data_names: names_to_print.append(i + 'average val') names_to_print.append(i + 'val') print colors print names_to_print plt = plot_together(special_histories, names_to_print, colors, custom_title) save_plot(plt, SAVE, out_folder_2) finally_show(plt)
special_histories = [] for i in range(0, len(data_paths)): special_histories.append(loadHistory(data_paths[i])) special_histories[i] = count_averages(special_histories[i], 'loss') custom_title = 'Validation error in last epoch' import matplotlib.pyplot as plt plt, figure = boxplots_in_row_custom611(plt, special_histories, data_names, BestInstead=True, just='both', forced_ymax=0.16) figure.suptitle(custom_title) # needs adjustment of the top value save_plot(plt, True, out_folder_1) #finally_show(plt) names_to_print = ["299x299 average val", "299x299 val"] names_to_print += ["640x640 average val", "640x640 val"] custom_title = 'Pixel size comparison' colors = ["green", "green", "red", "red"] plt = plot_together(special_histories, names_to_print, colors, custom_title) save_plot(plt, SAVE, out_folder_2) finally_show(plt)