예제 #1
0
    def add_length_to_accordance_file(accordance_file, length_file,
                                      output_prefix):

        accordance_dict = SynDict(filename=accordance_file,
                                  allow_repeats_of_key=True)
        length_dict = SynDict(filename=length_file, expression=int)
        print(length_dict)
        longest_list = IdList()

        all_output_file = "%s.all.correspondence" % output_prefix
        longest_output_file = "%s.longest.correspondence" % output_prefix
        longest_id_file = "%s.longest.ids" % output_prefix

        with open(all_output_file, "w") as all_out_fd:
            with open(longest_output_file, "w") as longest_out_fd:
                for gene in accordance_dict:
                    current_transcript = None
                    current_length = 0
                    for transcript in accordance_dict[gene]:
                        if length_dict[transcript] > current_length:
                            current_transcript = transcript
                            current_length = length_dict[transcript]
                        all_out_fd.write(
                            "%s\t%s\t%i\n" %
                            (gene, transcript, length_dict[transcript]))

                    longest_out_fd.write(
                        "%s\t%s\t%i\n" %
                        (gene, current_transcript, current_length))
                    longest_list.append(current_transcript)
        longest_list.write(longest_id_file)
예제 #2
0
    def get_longest_pep_per_gene_from_ensembl_pep_dict(protein_dict,
                                                       output_prefix=None):
        length_file = "%s.protein_length.tsv" % output_prefix
        if output_prefix:
            longest_protein_id_file = "%s.longest_pep.ids" % output_prefix

            len_fd = open(length_file, 'w')
            len_fd.write("#gene_id\tprotein_id\tprotein_length\n")

        data_dict = OrderedDict()
        for protein_id in protein_dict:
            length = len(protein_dict[protein_id].seq)
            description_list = protein_dict[protein_id].description.split()
            #print protein_dict[protein_id]
            #print ''
            #print description_list

            for entry in description_list:
                if "gene:" in entry:
                    gene_id = entry.split(":")[1]
            if output_prefix:
                len_fd.write("%s\t%s\t%i\n" % (gene_id, protein_id, length))
            if gene_id not in data_dict:
                data_dict[gene_id] = protein_id
            else:
                if length > len(protein_dict[data_dict[gene_id]].seq):
                    data_dict[gene_id] = protein_id

        longest_pep_ids = IdList(data_dict.values())
        if output_prefix:
            longest_pep_ids.write(longest_protein_id_file)
            len_fd.close()
        return longest_pep_ids
예제 #3
0
    def create_per_cluster_element_id_files(self, cluster_dict,
                                            output_directory):
        self.safe_mkdir(output_directory)

        for cluster_id in cluster_dict:
            cluster_element_id_list = IdList(cluster_dict[cluster_id])
            cluster_element_id_list.write("%s/%s.ids" %
                                          (output_directory, cluster_id))
예제 #4
0
    def prepare_annotation_file_from_transcript_and_cds(
            self,
            transcript_file,
            cds_file,
            correspondence_file,
            output_prefix,
            format="fasta",
            correspondence_key_column=0,
            correspondence_value_column=1,
            verbose=False):
        transcript_dict = self.parse_seq_file(transcript_file,
                                              "parse",
                                              format=format)

        cds_dict = self.parse_seq_file(cds_file, "parse", format=format)

        correspondence_dict = SynDict(filename=correspondence_file,
                                      comments_prefix="#",
                                      key_index=correspondence_key_column,
                                      value_index=correspondence_value_column)

        no_corresponding_cds_transcript_list = IdList()
        cds_not_found_transcript_list = IdList()

        annotation_file = "%s.annotation" % output_prefix
        no_corresponding_cds_transcript_file = "%s.no_cds.id" % output_prefix
        cds_not_found_transcript_file = "%s.not_found_cds.id" % output_prefix

        with open(annotation_file, "w") as annotation_fd:
            for transcript_id in transcript_dict:
                if transcript_id not in correspondence_dict:
                    no_corresponding_cds_transcript_list.append(transcript_id)
                    if verbose:
                        print(
                            "No cds in correspondence file for transcript %s" %
                            transcript_id)
                    continue
                cds_id = correspondence_dict[transcript_id]
                length = len(cds_dict[cds_id].seq)
                start = transcript_dict[transcript_id].seq.upper().find(
                    cds_dict[cds_id].seq.upper())
                if start == -1:
                    cds_not_found_transcript_list.append(transcript_id)
                    if verbose:
                        print("CDS was not found for transcript %s" %
                              transcript_id)
                    continue
                annotation_string = "%s\t+\t%i\t%i\n" % (transcript_id,
                                                         start + 1, length)

                annotation_fd.write(annotation_string)

        no_corresponding_cds_transcript_list.write(
            no_corresponding_cds_transcript_file)
        cds_not_found_transcript_list.write(cds_not_found_transcript_file)
예제 #5
0
파일: File.py 프로젝트: mahajrod/RouToolPa
 def extract_ids_from_file(input_file,
                           output_file=None,
                           header=False,
                           column_separator="\t",
                           comments_prefix="#",
                           column_number=None):
     id_list = IdList()
     id_list.read(input_file,
                  column_separator=column_separator,
                  comments_prefix=comments_prefix,
                  column_number=column_number,
                  header=header)
     if output_file:
         id_list.write(output_file, header=header)
     return id_list
예제 #6
0
    def extract_eggnog_fam_by_protein_syn_dict(self, eggnog_fam_dict, protein_syn_dict, output_prefix=None, species_id=None):

        extracted_families = SynDict()
        common_protein_names_to_families_dict = SynDict()
        common_names_to_eggnog_proteins_syn_dict = SynDict()

        not_found_proteins_common_names = IdList()

        transposed_eggnog_fam_dict = eggnog_fam_dict.exchange_key_and_value()

        for common_protein_name in protein_syn_dict:
            not_found = True
            for protein_id in protein_syn_dict[common_protein_name]:
                extended_protein_id = protein_id if species_id is None else species_id + "." + protein_id
                if extended_protein_id in transposed_eggnog_fam_dict:
                    not_found = False
                    if common_protein_name not in common_protein_names_to_families_dict:
                        common_protein_names_to_families_dict[common_protein_name] = [transposed_eggnog_fam_dict[extended_protein_id][0]]
                        common_names_to_eggnog_proteins_syn_dict[common_protein_name] = [extended_protein_id]
                    else:
                        common_protein_names_to_families_dict[common_protein_name].append(transposed_eggnog_fam_dict[extended_protein_id][0])
                        common_names_to_eggnog_proteins_syn_dict[common_protein_name].append(extended_protein_id)
                    if transposed_eggnog_fam_dict[extended_protein_id][0] not in extracted_families:
                        extracted_families[transposed_eggnog_fam_dict[extended_protein_id][0]] = eggnog_fam_dict[transposed_eggnog_fam_dict[extended_protein_id][0]]

            if not_found:
                not_found_proteins_common_names.append(common_protein_name)

        if output_prefix:
            extracted_families.write(filename="%s.extracted_families.fam" % output_prefix, splited_values=True)
            common_protein_names_to_families_dict.write(filename="%s.common_protein_names_to_families.correspondence" % output_prefix, splited_values=True)
            common_names_to_eggnog_proteins_syn_dict.write(filename="%s.common_protein_names_to_eggnog_proteins.correspondence" % output_prefix, splited_values=True)
            not_found_proteins_common_names.write(filename="%s.not_found.common_names" % output_prefix)

            #print common_names_to_eggnog_proteins_syn_dict
            #print common_protein_names_to_families_dict
        return extracted_families, common_protein_names_to_families_dict, \
               common_names_to_eggnog_proteins_syn_dict, not_found_proteins_common_names
예제 #7
0
    def cluster_sequence_names_by_id_fragment(self,
                                              seq_id_list,
                                              id_element_index,
                                              id_separator="_",
                                              output_prefix=None):
        cluster_dict = SynDict()
        skipped_id_list = IdList()

        for seq_id in seq_id_list:
            seq_id_splited = seq_id.split(id_separator)
            if id_element_index < len(seq_id_splited):
                if seq_id_list[id_element_index] in cluster_dict:
                    cluster_dict[seq_id_list[id_element_index]].append(seq_id)
                else:
                    cluster_dict[seq_id_list[id_element_index]] = [seq_id]
            else:
                skipped_id_list.append(seq_id)

        if output_prefix:
            cluster_dict.write("%s.seqid.clusters" % output_prefix,
                               splited_values=True)
            skipped_id_list.write("%s.seqid.skipped.ids" % output_prefix)

        return cluster_dict
예제 #8
0
__author__ = 'Sergei F. Kliver'
import sys
import argparse
from RouToolPa.Collections.General import IdList

parser = argparse.ArgumentParser()

parser.add_argument("-i",
                    "--fam_file",
                    action="store",
                    dest="fam_file",
                    required=True,
                    help="File with families")
parser.add_argument("-o",
                    "--output",
                    action="store",
                    dest="output",
                    default="stdout",
                    help="File to write ids")

args = parser.parse_args()

out_fd = sys.stdout if args.output == "stdout" else open(args.output, "w")

id_list = IdList()
id_list.read(args.fam_file,
             close_after_if_file_object=True,
             column_number=1,
             id_in_column_separator=",")
id_list.write(args.output, close_after_if_file_object=True)
예제 #9
0
    def handle_sanger_data(self,
                           input_dir,
                           output_prefix,
                           outdir=None,
                           read_subfolders=False,
                           min_mean_qual=0,
                           min_median_qual=0,
                           min_len=50):
        if outdir:
            self.workdir = outdir

        self.init_dirs()

        sanger_filelist = self.make_list_of_path_to_files(
            input_dir,
            expression=self.is_sanger_file,
            recursive=read_subfolders,
            return_absolute_paths=True)
        stat_dict = TwoLvlDict()
        record_dict = OrderedDict()
        trimmed_record_dict = OrderedDict()
        excluded_list = IdList()
        excluded_counter = 0
        low_quality_counter = 0
        too_short_counter = 0

        merged_raw_fastq = "%s/%s.raw.fastq" % (self.workdir, output_prefix)
        merged_raw_fasta = "%s/%s.raw.fasta" % (self.workdir, output_prefix)
        merged_trimmed_fastq = "%s/%s.trimmed.fastq" % (self.workdir,
                                                        output_prefix)
        merged_trimmed_fasta = "%s/%s.trimmed.fasta" % (self.workdir,
                                                        output_prefix)

        for filename in sanger_filelist:
            filename_list = self.split_filename(filename)

            record_raw_fastq = "%s/fastq/raw/%s.raw.fastq" % (self.workdir,
                                                              filename_list[1])
            record_raw_fasta = "%s/fasta/raw/%s.raw.fasta" % (self.workdir,
                                                              filename_list[1])
            record_raw_qual_plot_prefix = "%s/qual_plot/raw/%s.raw.qual" % (
                self.workdir, filename_list[1])

            record_trimmed_fastq = "%s/fastq/trimmed/%s.trimmed.fastq" % (
                self.workdir, filename_list[1])
            record_trimmed_fasta = "%s/fasta/trimmed/%s.trimmed.fasta" % (
                self.workdir, filename_list[1])
            record_trimmed_qual_plot_prefix = "%s/qual_plot/trimmed/%s.trimmed.qual" % (
                self.workdir, filename_list[1])

            record = SeqIO.read(self.metaopen(filename, "rb"), format="abi")
            record_dict[record.id] = record
            SeqIO.write(record, record_raw_fastq, format="fastq")
            SeqIO.write(record, record_raw_fasta, format="fasta")

            trimmed_record = SeqIO.AbiIO._abi_trim(record)

            stat_dict[record.id] = OrderedDict({
                "raw_len":
                len(record),
                "raw_mean_qual":
                np.mean(record.letter_annotations["phred_quality"]),
                "raw_median_qual":
                np.median(record.letter_annotations["phred_quality"]),
                "trimmed_len":
                len(trimmed_record),
                "trimmed_mean_qual":
                np.mean(trimmed_record.letter_annotations["phred_quality"]),
                "trimmed_median_qual":
                np.median(trimmed_record.letter_annotations["phred_quality"]),
                "retained":
                "-",
            })
            MatplotlibRoutines.draw_bar_plot(
                record.letter_annotations["phred_quality"],
                record_raw_qual_plot_prefix,
                extentions=["png"],
                xlabel="Position",
                ylabel="Phred quality",
                title="Per base quality",
                min_value=None,
                max_value=None,
                new_figure=True,
                figsize=(3 * (int(len(record) / 100) + 1), 3),
                close_figure=True)

            if stat_dict[record.id]["trimmed_len"] >= min_len:
                if min_median_qual:
                    if (stat_dict[record.id]["trimmed_median_qual"] >=
                            min_median_qual) and (
                                stat_dict[record.id]["trimmed_mean_qual"] >=
                                min_mean_qual):
                        stat_dict[record.id]["retained"] = "+"
                    else:
                        low_quality_counter += 1
                else:
                    stat_dict[record.id]["retained"] = "+"
            else:
                too_short_counter += 1

            if stat_dict[record.id]["retained"] == "-":
                excluded_list.append(record.id)
                continue

            SeqIO.write(trimmed_record, record_trimmed_fastq, format="fastq")
            SeqIO.write(trimmed_record, record_trimmed_fasta, format="fasta")

            MatplotlibRoutines.draw_bar_plot(
                trimmed_record.letter_annotations["phred_quality"],
                record_trimmed_qual_plot_prefix,
                extentions=["png"],
                xlabel="Position",
                ylabel="Phred quality",
                title="Per base quality",
                min_value=None,
                max_value=None,
                new_figure=True,
                figsize=(3 * (int(len(record) / 100) + 1), 3),
                close_figure=True)

            trimmed_record_dict[record.id] = trimmed_record

        SeqIO.write(self.record_from_dict_generator(record_dict),
                    merged_raw_fastq,
                    format="fastq")
        SeqIO.write(self.record_from_dict_generator(record_dict),
                    merged_raw_fasta,
                    format="fasta")

        SeqIO.write(self.record_from_dict_generator(trimmed_record_dict),
                    merged_trimmed_fastq,
                    format="fastq")
        SeqIO.write(self.record_from_dict_generator(trimmed_record_dict),
                    merged_trimmed_fasta,
                    format="fasta")

        excluded_list.write("%s.excluded.ids" % output_prefix)
        stat_dict.write(out_filename="%s.stats" % output_prefix)

        print("Excluded: %i" % excluded_counter)
        print("\tToo short( < %i ): %i" % (min_len, too_short_counter))
        print("\tLow quality( median < %i or mean < %i ): %i" %
              (min_median_qual, min_mean_qual, low_quality_counter))
예제 #10
0
for entry in complicated_families_dict.all_values():
    tmp = entry.split(";")
    for i in range(0, len(tmp)):
        if "_" in tmp[i]:
            tmp[i] = tmp[i][2]
        tmp[i] = tmp[i].split(",")
        for syn_id in tmp[i]:
            complicated_families_syn_ids.add(syn_id)
complicated_families_syn_ids.write("complicated_families_check.ids")

nonassembled.write("splited_to_several_families.t", absent_symbol=".")

assemled_to_different_families = species_syn_dict.filter_by_line(
    filter_different_assembly)
species_syn_dict.write("correctly_assembled_families_in_all_species.t",
                       absent_symbol=".")
assemled_to_different_families.write(
    "assembled_to_different_families_in_all_species.t", absent_symbol=".")

correctly_assembled_families_synonym = IdList(
    set(species_syn_dict.all_values()))
assemled_to_different_families_synonym = IdList(
    set(assemled_to_different_families.all_values()))

correctly_assembled_families_synonym.write(
    "correctly_assembled_families_syn_in_all_species.ids")
assemled_to_different_families_synonym.write(
    "assembled_to_different_families_syn_in_all_species.ids")
if args.output != "output":
    out_fd.close()
예제 #11
0
                         count_dict[args.name_b][scaffold][i], ratio))
                elif ratio < (1.0 / float(args.minimal_ratio)):
                    vcf_b_more_variants_file_fd.write(
                        "%s\t%i\t%i\t%i\t%i\t%i\t%.3f\n" %
                        (scaffold, start, stop, i,
                         count_dict[args.name_a][scaffold][i],
                         count_dict[args.name_b][scaffold][i], ratio))

            elif count_dict[args.name_a][scaffold] == 0:
                vcf_a_no_variants_file_fd.write("%s\t%i\t%i\t%i" %
                                                (scaffold, start, stop, i))
            elif count_dict[args.name_b][scaffold] == 0:
                vcf_b_no_variants_file_fd.write("%s\t%i\t%i\t%i" %
                                                (scaffold, start, stop, i))

    else:
        if scaffold not in count_dict[args.name_a]:
            vcf_a_absent_scaffolds_id_list.append(scaffold)
        if scaffold not in count_dict[args.name_b]:
            vcf_b_absent_scaffolds_id_list.append(scaffold)

vcf_a_more_variants_file_fd.close()
vcf_b_more_variants_file_fd.close()
vcf_a_no_variants_file_fd.close()
vcf_b_no_variants_file_fd.close()

vcf_density_ratio_fd.close()

vcf_a_absent_scaffolds_id_list.write(vcf_a_absent_scaffolds_id_file)
vcf_b_absent_scaffolds_id_list.write(vcf_b_absent_scaffolds_id_file)
예제 #12
0
out_fd = sys.stdout if args.output == "stdout" else open(args.output, "w")
annotations_dict = SeqIO.to_dict(GFF.parse(open(args.input)))
single_gene_id_list = IdList()

for record in annotations_dict:
    for feature in annotations_dict[record].features:
        #print feature.id
        if feature.type != "gene":
            continue
        for subfeature in feature.sub_features:
            if subfeature.type != "mRNA":
                continue
            exon_number = 0
            for mRNA_subfeature in subfeature.sub_features:
                if mRNA_subfeature.type == "exon":
                    exon_number += 1
            if exon_number == 1:
                single_gene_id_list.append(feature.id)

single_gene_id_list.write(out_fd, close_after_if_file_object=True)
"""
sequence_groups_id = SynDict()
sequence_groups_id.read(args.id_file, split_values=True)
#print("Parsing %s..." % args.input_file)
sequence_dict = SeqIO.index_db(tmp_index_file, args.input, format=args.format)
for group in sequence_groups_id:
    SeqIO.write(record_by_id_generator(sequence_dict, sequence_groups_id[group]),
                "%s%s.%s" % (args.output, group, args.extension), format=args.format)
"""
예제 #13
0
    def split_hmm(self,
                  hmmfile,
                  output_dir,
                  num_of_recs_per_file,
                  num_of_files=None,
                  output_prefix=None,
                  threads=4):

        try:
            os.mkdir(output_dir)
        except OSError:
            pass

        id_fd = CGAS.cgas(hmmfile,
                          grep_pattern="NAME",
                          whole_word_match=True,
                          awk_code="{print $2}",
                          capture_output=True)

        split_index = 1
        ids_written = 0
        ids_list = IdList()
        #ids_list = read_ids(id_fd, close_after_if_file_object=False)
        ids_list.read(id_fd, close_after_if_file_object=True)
        number_of_ids = len(ids_list)
        out_prefix = self.split_filename(
            hmmfile)[1] if output_prefix is None else output_prefix

        num_of_ids = int(
            number_of_ids /
            num_of_files) + 1 if num_of_files else num_of_recs_per_file

        common_options = " -f"
        common_options += " %s" % hmmfile
        options_list = []
        while (ids_written + num_of_ids) <= number_of_ids:
            tmp_id_list = IdList(ids_list[ids_written:ids_written +
                                          num_of_ids])
            tmp_id_list.write("%s/%s_%i.ids" %
                              (output_dir, out_prefix, split_index))

            options = common_options
            options += " %s/%s_%i.ids" % (output_dir, out_prefix, split_index)
            options += " > %s" % ("%s/%s_%i.hmm" %
                                  (output_dir, out_prefix, split_index))
            options_list.append(options)

            split_index += 1
            ids_written += num_of_ids

        if ids_written != number_of_ids:
            tmp_id_list = IdList(ids_list[ids_written:])
            tmp_id_list.write("%s/%s_%i.ids" %
                              (output_dir, out_prefix, split_index))

            options = common_options
            options += " %s/%s_%i.ids" % (output_dir, out_prefix, split_index)
            options += " > %s" % ("%s/%s_%i.hmm" %
                                  (output_dir, out_prefix, split_index))
            options_list.append(options)

            split_index += 1
        #print options_list
        self.parallel_execute(options_list, cmd="hmmfetch", threads=threads)
예제 #14
0
    def parallel_run(
        self,
        input_dir,
        output_dir,
        output_prefix,
        input_type="codon",
        min_seq_number_for_conserved_position=None,
        min_seq_number_for_flank_position=None,
        max_pos_number_for_noncons_contig_pos=None,
        min_block_len=None,
        allow_gaps="half",
        save_postscript=True,
        output_type="htm",
        threads=None,
    ):

        if threads:
            self.threads = threads

        data_dir = "%s/data/" % output_dir
        postscript_dir = "%s/ps/" % output_dir
        results_dir = "%s/results/" % output_dir
        htm_dir = "%s/htm/" % output_dir

        for directory in output_dir, data_dir, postscript_dir, results_dir, htm_dir:
            self.safe_mkdir(directory)

        #input_files_list = map(os.path.abspath, self.make_list_of_path_to_files(input_directory))

        input_files_list = self.make_list_of_path_to_files(
            input_dir, return_absolute_paths=True)

        for entry in input_files_list:
            directory, prefix, extension = self.split_filename(entry)
            os.system("ln -s %s %s/%s%s" %
                      (entry, data_dir, prefix, extension))

        data_files_list = self.make_list_of_path_to_files(
            data_dir, return_absolute_paths=True)

        common_options = self.parse_options(
            input_type=input_type,
            min_seq_number_for_conserved_position=
            min_seq_number_for_conserved_position,
            min_seq_number_for_flank_position=min_seq_number_for_flank_position,
            max_pos_number_for_noncons_contig_pos=
            max_pos_number_for_noncons_contig_pos,
            min_block_len=min_block_len,
            allow_gaps=allow_gaps,
            save_postscript=save_postscript,
            output_type=output_type,
            concatenate_blocks_from_aignments=None)
        options_list = []

        for data_file in data_files_list:
            options = " %s" % data_file
            options += " %s" % common_options
            options_list.append(options)

        self.parallel_execute(options_list=options_list)

        block_coordinates = OrderedDict()

        skipped_ids_file = "%s/%s.skipped.ids" % (output_dir, output_prefix)
        skipped_ids = IdList()

        for filename in data_files_list:
            data_dir, prefix, extension = self.split_filename(filename)
            blocks_file = "%s-gb" % filename
            htm_file = "%s-gb.htm" % filename
            postscript_file = "%s-gbPS" % filename

            if (not os.path.exists(blocks_file)) or (
                    not os.path.exists(htm_file)):
                skipped_ids.append(prefix)
                print("Warning!!! %s skipped..." % prefix)
                continue

            block_coordinates[prefix] = self.extract_block_coordinates(
                htm_file)
            os.system("mv %s %s/%s.ps" %
                      (postscript_file, postscript_dir, prefix))
            os.system("mv %s %s/%s.htm" % (htm_file, htm_dir, prefix))
            self.convert_output_to_fasta(
                blocks_file, "%s/%s%s" % (results_dir, prefix, extension))
            os.remove(blocks_file)

        block_coordinates_file = "%s/%s.block.coordinates" % (output_dir,
                                                              output_prefix)
        skipped_ids.write(skipped_ids_file)
        with open(block_coordinates_file, "w") as block_fd:
            for entry in block_coordinates:
                coordinates_string = ";".join(
                    map(lambda s: "%i,%i" % (s[0], s[1]),
                        block_coordinates[entry]))
                block_fd.write("%s\t%s\n" % (entry, coordinates_string))
예제 #15
0
    if args.all or args.tree:
        os.system("wget %s" % tree_options)
    if args.all or args.hmm:
        os.system("wget %s" % hmm_options)


pool = Pool(args.threads)
pool.map(download_data, family_ids)
pool.close()
for fam_id in family_ids:
    if args.all or args.alignment:
        if os.path.getsize("%s%s.fasta" % (args.output_dir, fam_id)) == 0:
            absent_alignment_list.append(fam_id)
    if args.all or args.tree:
        if os.path.getsize("%s%s.nwk" % (args.output_dir, fam_id)) == 0:
            absent_tree_list.append(fam_id)
    if args.all or args.hmm:
        if os.path.getsize("%s%s.hmm" % (args.output_dir, fam_id)) == 0:
            absent_hmm_list.append(fam_id)

if absent_alignment_list:
    absent_alignment_list.write("absent_alignments.ids")
    print("%i alignments were not downloaded" % len(absent_alignment_list))
if absent_tree_list:
    absent_tree_list.write("absent_trees.ids")
    print("%i trees were not downloaded" % len(absent_tree_list))
if absent_hmm_list:
    absent_hmm_list.write("absent_hmms.ids")
    print("%i hmms were not downloaded" % len(absent_hmm_list))