def parallel_align(self, list_of_files, output_directory, output_suffix="alignment", gap_open_penalty=None, offset=None, maxiterate=None, quiet=True, mode="globalpair", number_of_processes=1, anysymbol=False): # TODO: add rest of options options = " --thread %i" % self.threads options += " --op %f" % gap_open_penalty if gap_open_penalty is not None else "" options += " --ep %f" % offset if offset is not None else "" options += " --maxiterate %i" % maxiterate if maxiterate is not None else "" options += " --quiet" if quiet else "" options += " --%s" % mode options += " --anysymbol" if anysymbol else "" options_list = [] for filename in list_of_files: basename = FileRoutines.split_filename(filename)[1] op = options op += " %s" % filename op += " > %s/%s.fasta" % (output_directory, ("%s_%s" % (basename, output_suffix)) if output_suffix else basename) options_list.append(op) self.parallel_execute(options_list, threads=number_of_processes)
def parallel_align(self, list_of_files, output_dir, msa_tool='prank', seq_type=None, bootstrap_number=100, genetic_code=1, threads=None, msa_tool_options=None, seq_cutoff=None, col_cutoff=None, mafft_bin=None, prank_bin=None, muscle_bin=None, pagan_bin=None, ruby_bin=None, program=None, cmd_log_file=None, cpus_per_task=1, handling_mode="local", job_name=None, log_prefix=None, error_log_prefix=None, max_jobs=None, max_running_time=None, max_memory_per_node=None, max_memmory_per_cpu=None, modules_list=None, environment_variables_dict=None): common_options = self.parse_common_options(output_dir=output_dir, msa_tool=msa_tool, seq_type=seq_type, bootstrap_number=bootstrap_number, genetic_code=genetic_code, threads=threads, msa_tool_options=msa_tool_options, seq_cutoff=seq_cutoff, col_cutoff=col_cutoff, mafft_bin=mafft_bin, prank_bin=prank_bin, muscle_bin=muscle_bin, pagan_bin=pagan_bin, ruby_bin=ruby_bin, program=program) FileRoutines.safe_mkdir(output_dir) options_list = [] for filename in list_of_files: basename = FileRoutines.split_filename(filename)[1] op = common_options op += " --seqFile %s" % filename op += " --dataset %s" % basename options_list.append(op) if handling_mode == "local": self.parallel_execute(options_list) elif handling_mode == "slurm": cmd_list = ["%s%s %s" % ((self.path + "/") if self.path else "", self.cmd, options) for options in options_list] self.slurm_run_multiple_jobs_in_wrap_mode(cmd_list, cmd_log_file, max_jobs=max_jobs, job_name=job_name, log_prefix=log_prefix, error_log_prefix=error_log_prefix, cpus_per_node=None, max_running_jobs=None, max_running_time=max_running_time, cpus_per_task=cpus_per_task, max_memory_per_node=max_memory_per_node, max_memmory_per_cpu=max_memmory_per_cpu, modules_list=modules_list, environment_variables_dict=environment_variables_dict)
def parallel_align(self, list_of_files, output_directory, output_suffix=None, tree_file=None, output_format=None, show_xml=None, show_tree=None, show_ancestral_sequences=None, show_evolutionary_events=None, showall=None, compute_posterior_support=None, njtree=None, skip_insertions=False, codon_alignment=None, translated_alignment=None, cmd_log_file=None, cpus_per_task=1, handling_mode="local", job_name=None, log_prefix=None, error_log_prefix=None, max_jobs=None, max_running_time=None, max_memory_per_node=None, max_memmory_per_cpu=None, modules_list=None, environment_variables_dict=None): common_options = self.parse_common_options(tree_file=tree_file, output_format=output_format, show_xml=show_xml, show_tree=show_tree, show_ancestral_sequences=show_ancestral_sequences, show_evolutionary_events=show_evolutionary_events, showall=showall, compute_posterior_support=compute_posterior_support, njtree=njtree, skip_insertions=skip_insertions, codon_alignment=codon_alignment, translated_alignment=translated_alignment) FileRoutines.safe_mkdir(output_directory) options_list = [] for filename in list_of_files: basename = FileRoutines.split_filename(filename)[1] op = common_options op += " -d=%s" % filename op += " -o=%s/%s.fasta" % (output_directory, ("%s_%s" % (basename, output_suffix)) if output_suffix else basename) options_list.append(op) if handling_mode == "local": self.parallel_execute(options_list) elif handling_mode == "slurm": cmd_list = ["%s%s %s" % ((self.path + "/") if self.path else "", self.cmd, options) for options in options_list] self.slurm_run_multiple_jobs_in_wrap_mode(cmd_list, cmd_log_file, max_jobs=max_jobs, job_name=job_name, log_prefix=log_prefix, error_log_prefix=error_log_prefix, cpus_per_node=None, max_running_jobs=None, max_running_time=max_running_time, cpus_per_task=cpus_per_task, max_memory_per_node=max_memory_per_node, max_memmory_per_cpu=max_memmory_per_cpu, modules_list=modules_list, environment_variables_dict=environment_variables_dict)
def read(self, input_file, filetype="fasta", verbose=False): list_of_files = FileRoutines.make_list_of_path_to_files(input_file) for filename in list_of_files: if verbose: print("Parsing %s ..." % filename) directory, basename, extension = FileRoutines.split_filename(filename) try: self.records[basename] = MultipleAlignmentStatRecord(basename, alignment=AlignIO.read(filename, filetype)) self.record_id_list.append(basename) except: raise ValueError("ERROR: Issues while parsing or calculating stats for %s!!!" % filename) # collectiontype-dependent function pass
def parallel_blast(self, blast_command, seqfile, database, outfile=None, blast_options=None, split_dir="splited_fasta", splited_output_dir="splited_output_dir", evalue=None, output_format=None, threads=None, num_of_seqs_per_scan=None, combine_output_to_single_file=True, async_run=False, external_process_pool=None): splited_dir = FileRoutines.check_path(split_dir) splited_out_dir = FileRoutines.check_path(splited_output_dir) self.safe_mkdir(splited_dir) self.safe_mkdir(splited_out_dir) number_of_files = num_of_seqs_per_scan if num_of_seqs_per_scan else 5 * threads if threads else 5 * self.threads self.split_fasta(seqfile, splited_dir, num_of_files=number_of_files) input_list_of_files = sorted(os.listdir(splited_dir)) list_of_files = [] for filename in input_list_of_files: filename_prefix = FileRoutines.split_filename(filename)[1] input_file = "%s%s" % (splited_dir, filename) output_file = "%s%s.hits" % (splited_out_dir, filename_prefix) list_of_files.append((input_file, output_file)) options_list = [] out_files = [] for in_file, out_filename in list_of_files: options = " -out %s" % out_filename options += " -db %s" % database options += " -query %s" % in_file options += " %s" % blast_options if blast_options else "" options += " -evalue %s" % evalue if evalue else "" options += " -outfmt %i" % output_format if output_format else "" options_list.append(options) out_files.append(out_filename) self.parallel_execute(options_list, cmd=blast_command, threads=threads, async_run=async_run, external_process_pool=external_process_pool) if combine_output_to_single_file: CGAS.cat(out_files, output=outfile)
def parallel_positive_selection_test(self, in_dir, tree_file, out_dir, results_file, seq_type="codons", codon_frequency="F3X4", noisy=3, verbose="concise", runmode=0, clock=0, aminoacid_distance=None, genetic_code=0, fix_kappa=False, kappa=5, getSE=0, RateAncestor=0, small_difference=0.000001, clean_data=True, method=0): """ This function implements positive selection test (branch-site model) for branch labeled in tree file using model_A vs model_A_null(omega fixed to 1) comparison """ FileRoutines.safe_mkdir(out_dir) alignment_files_list = FileRoutines.make_list_of_path_to_files(in_dir) tree_file_abs_path = os.path.abspath(tree_file) options_list = [] dir_list = [] basename_dir_list = [] model_list = ["Model_A", "Model_A_null"] fix_omega_dict = {"Model_A": False, "Model_A_null": True} for filename in alignment_files_list: directory, basename, extension = FileRoutines.split_filename( filename) filename_out_dir = os.path.abspath("%s/%s/" % (out_dir, basename)) basename_dir_list.append(basename) FileRoutines.safe_mkdir(filename_out_dir) for model in model_list: model_dir = "%s/%s/" % (filename_out_dir, model) FileRoutines.safe_mkdir(model_dir) out_file = "%s/%s/%s.out" % (filename_out_dir, model, basename) ctl_file = "%s/%s/%s.ctl" % (filename_out_dir, model, basename) options_list.append("%s.ctl" % basename) dir_list.append(model_dir) self.generate_ctl_file(os.path.abspath(filename), tree_file_abs_path, out_file, ctl_file, seq_type=seq_type, codon_frequency=codon_frequency, noisy=noisy, verbose=verbose, runmode=runmode, clock=clock, aminoacid_distance=aminoacid_distance, model=2, nssites=2, genetic_code=genetic_code, fix_kappa=fix_kappa, kappa=kappa, fix_omega=fix_omega_dict[model], omega=1, getSE=getSE, RateAncestor=RateAncestor, Mgene=0, small_difference=small_difference, clean_data=clean_data, method=method) self.parallel_execute(options_list, dir_list=dir_list) results_dict = OrderedDict() double_delta_dict = OrderedDict() raw_pvalues_dict = OrderedDict() raw_pvalues_list = [] for basename in basename_dir_list: results_dict[basename] = OrderedDict() for model in model_list: output_file = "%s/%s/%s/%s.out" % (out_dir, basename, model, basename) codeml_report = CodeMLReport(output_file) results_dict[basename][model] = codeml_report.LnL skipped_genes_set = set() for basename in basename_dir_list: for model in model_list: if results_dict[basename][model] is None: print("LnL was not calculated for %s" % basename) skipped_genes_set.add(basename) break else: doubled_delta = 2 * (results_dict[basename]["Model_A"] - results_dict[basename]["Model_A_null"]) p_value = chisqprob(doubled_delta, 1) # degrees of freedom = 1 double_delta_dict[basename] = doubled_delta raw_pvalues_dict[basename] = p_value raw_pvalues_list.append(p_value) adjusted_pvalues_list = fdrcorrection0(raw_pvalues_list)[1] #print adjusted_pvalues_list i = 0 with open(results_file, "w") as out_fd: out_fd.write( "id\tmodel_a_null,LnL\tmodel_a,LnL\t2*delta\traw p-value\tadjusted p-value\n" ) for basename in basename_dir_list: for model in model_list: if results_dict[basename][model] is None: print("LnL was not calculated for %s" % basename) break else: #doubled_delta = 2 * (results_dict[basename]["Model_A"] - results_dict[basename]["Model_A_null"]) #p_value = chisqprob(doubled_delta, 1) # degrees of freedom = 1 #print basename, results_dict[basename]["Model_A_null"],results_dict[basename]["Model_A"], double_delta_dict[basename], raw_pvalues_dict[basename], adjusted_pvalues_list[i] out_fd.write( "%s\t%f\t%f\t%f\t%f\t%f\n" % (basename, results_dict[basename]["Model_A_null"], results_dict[basename]["Model_A"], double_delta_dict[basename], raw_pvalues_dict[basename], adjusted_pvalues_list[i])) i += 1
def parallel_codeml(self, in_dir, tree_file, out_dir, seq_type="codons", codon_frequency="F3X4", noisy=0, verbose="concise", runmode=0, clock=0, aminoacid_distance=None, model=1, nssites=0, genetic_code=0, fix_kappa=False, kappa=5, fix_omega=False, omega=0.2, getSE=0, RateAncestor=0, small_difference=0.000001, clean_data=True, method=0, Mgene=None): FileRoutines.safe_mkdir(out_dir) alignment_files_list = FileRoutines.make_list_of_path_to_files(in_dir) tree_file_abs_path = os.path.abspath(tree_file) options_list = [] dir_list = [] for filename in alignment_files_list: directory, basename, extension = FileRoutines.split_filename( filename) filename_out_dir = os.path.abspath("%s/%s/" % (out_dir, basename)) out_file = "%s/%s.out" % (filename_out_dir, basename) ctl_file = "%s/%s.ctl" % (filename_out_dir, basename) options_list.append(ctl_file) dir_list.append(filename_out_dir) FileRoutines.safe_mkdir(filename_out_dir) self.generate_ctl_file(os.path.abspath(filename), tree_file_abs_path, out_file, ctl_file, seq_type=seq_type, codon_frequency=codon_frequency, noisy=noisy, verbose=verbose, runmode=runmode, clock=clock, aminoacid_distance=aminoacid_distance, model=model, nssites=nssites, genetic_code=genetic_code, fix_kappa=fix_kappa, kappa=kappa, fix_omega=fix_omega, omega=omega, getSE=getSE, RateAncestor=RateAncestor, Mgene=Mgene, small_difference=small_difference, clean_data=clean_data, method=method) self.parallel_execute(options_list, dir_list=dir_list)
def parallel_search_tandem_repeat(self, query_file, output_prefix, matching_weight=2, mismatching_penalty=7, indel_penalty=7, match_probability=80, indel_probability=10, min_alignment_score=50, max_period=500, report_flanking_sequences=False, splited_fasta_dir="splited_fasta_dir", splited_result_dir="splited_output", converted_output_dir="converted_output", max_len_per_file=100000, store_intermediate_files=False, max_repeat_length=None): work_dir = os.getcwd() splited_filename = FileRoutines.split_filename(query_file) self.split_fasta_by_seq_len(query_file, splited_fasta_dir, max_len_per_file=max_len_per_file, output_prefix=splited_filename[1]) common_options = self.parse_common_options(matching_weight=matching_weight, mismatching_penalty=mismatching_penalty, indel_penalty=indel_penalty, match_probability=match_probability, indel_probability=indel_probability, min_alignment_score=min_alignment_score, max_period=max_period, report_flanking_sequences=report_flanking_sequences, make_dat_file=True, max_repeat_length=max_repeat_length) common_options += " -h" # suppress html output options_list = [] splited_files = os.listdir(splited_fasta_dir) FileRoutines.safe_mkdir(splited_result_dir) FileRoutines.safe_mkdir(converted_output_dir) os.chdir(splited_result_dir) input_dir = splited_fasta_dir if (splited_fasta_dir[0] == "/") or (splited_fasta_dir[0] == "~") \ else "../%s" % splited_fasta_dir for filename in splited_files: file_options = "%s/%s" % (input_dir, filename) file_options += common_options options_list.append(file_options) self.parallel_execute(options_list) os.chdir(work_dir) trf_output_file_list = [] for filename in splited_files: trf_output_file = "%s/%s.%i.%i.%i.%i.%i.%i.%i.dat" % (splited_result_dir, filename, matching_weight, mismatching_penalty, indel_penalty, match_probability, indel_probability, min_alignment_score, max_period) trf_output_file_list.append(trf_output_file) trf_report = self.convert_trf_report(trf_output_file_list, output_prefix) """ for suffix in (".rep", ".gff", ".simple.gff", ".short.tab", ".wide.tab", ".with_rep_seqs.gff", ".fasta"): file_str = "" merged_file = "%s%s" % (output_prefix, suffix) for filename in splited_files: file_str += " %s/%s%s" % (converted_output_dir, filename, suffix) CGAS.cat(file_str, merged_file) """ compress_splited_out_string = "tar czf %s.splited_output.tar.gz %s" % (output_prefix, splited_result_dir) os.system(compress_splited_out_string) if not store_intermediate_files: shutil.rmtree(splited_fasta_dir) shutil.rmtree(splited_result_dir) shutil.rmtree(converted_output_dir) return trf_report