예제 #1
0
    def test_model(self ,global_iteration, n_sample=1000, alpha=None):

        block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
        self.inception_model = InceptionV3([block_idx])
        self.inception_model.cuda()
        self.set_data_resolution(int(self.opt.crop_size/self.opt.aspect_ratio))
        self.progressive_model_on_one_gpu.eval()

        print('generator res: %s'%self.progressive_model_on_one_gpu.generator.res)
        print('generator phase: %s'%self.progressive_model_on_one_gpu.phase)
        if not os.path.isdir('samples'):
            os.mkdir('samples')
        if not os.path.isdir('samples/%s'%self.opt.name):
            os.mkdir('samples/%s'%self.opt.name)

        num_bs = 1
        for i in range(int(n_sample/num_bs)):
            print(i)
            z = torch.randn(num_bs, 512).cuda()
            global_iteration = self.opt.which_iter
            iteration = 0

            dim_ind = int(np.log2(self.progressive_model_on_one_gpu.dim))-2
            fake = self.progressive_model(iteration, global_iteration, dim_ind, z=z, mode='inference')
            # print(fake.size())
            fake = fake.cpu()
            for j in range(num_bs):
                save_image(fake[j,:,:,:], 'samples/%s/%s_%s_%s.png'%(self.opt.name, i*num_bs+j, self.progressive_model_on_one_gpu.dim, global_iteration),
                             nrow=1, normalize=True, range=(-1,1))


        fid = self.compute_FID(alpha)
        print('fid: %s', fid)
    def __init__(self, opt):
        self.opt = opt
        self.create_dataset()
        self.n_samples = len(self.dataset)

        self.end2end_model = ProgressiveSegEnd2EndModel(opt, self.n_samples)

        #end2end model
        if len(opt.gpu_ids) > 0:
            self.end2end_model = DataParallelWithCallback(
                self.end2end_model, device_ids=opt.gpu_ids)
            self.end2end_model_on_one_gpu = self.end2end_model.module
        else:
            self.end2end_model_on_one_gpu = self.end2end_model
        self.progressive_model = self.end2end_model_on_one_gpu.progressive_model
        self.pix2pix_model = self.end2end_model_on_one_gpu.pix2pix_model

        self.pix2pix_model.optimizer_G, self.pix2pix_model.optimizer_D = \
            self.pix2pix_model.create_optimizers(opt)
        self.optimizer_D2 = self.end2end_model_on_one_gpu.create_optimizers()
        self.phase = "stabilize"

        block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
        self.inception_model = InceptionV3([block_idx])
        self.inception_model.cuda()
예제 #3
0
def compute_FID(self):
    nums_fid = 1000
    dims = 2048
    batchsize = 10 
    all_reals = np.zeros((int(nums_fid/batchsize)*batchsize,dims))
    all_fakes = np.zeros((int(nums_fid/batchsize)*batchsize,dims))

    #load inception network
    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
    self.inception_model = InceptionV3([block_idx])
    self.inception_model.cuda()

    for i, data_i in enumerate(dataloader):
        if i * batchsize >= nums_fid:
            break
        generated = model(data_i, mode='inference')
        fake_acts = get_activations(generated, self.inception_model, batchsize, cuda=True)
        all_fakes[i*batchsize:i*batchsize+fake_acts.shape[0],:] = fake_acts

    for i, data_i in enumerate(dataloader):
        if i * batchsize >= nums_fid:
            break
            real_ims = Variable(data_i['image']).cuda()
            print(img.size())
            real_acts = get_activations(real_ims, self.inception_model, batchsize, cuda=True)
            all_reals[i*batchsize:i*batchsize+real_acts.shape[0],:] = real_acts

    fid_eval = calculate_fid_given_acts(all_reals, all_fakes)
    return fid_eval
예제 #4
0
파일: fid_score.py 프로젝트: ydiller/SB-GAN
def calculate_fid_given_ims(ims_1, ims_2, batch_size, cuda, dims=2048):
    """Calculates the FID of two paths"""
    for p in paths:
        if not os.path.exists(p):
            raise RuntimeError('Invalid path: %s' % p)

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]

    model = InceptionV3([block_idx])
    if cuda:
        model.cuda()

    m1, s1 = _compute_statistics_of_im(ims_1, model, batch_size, dims, cuda)
    m2, s2 = _compute_statistics_of_im(ims_2, model, batch_size, dims, cuda)
    fid_value = calculate_frechet_distance(m1, s1, m2, s2)

    return fid_value