예제 #1
0
파일: Extracter.py 프로젝트: nblago/kpy
def handle_extract(data, outname=None, fine='fine.npy',flexure_x_corr_nm=0.0,
    flexure_y_corr_pix = 0.0):

    exfile = "extracted_%s.npy" % outname
    if not os.path.exists(outname + ".npy"):
        E = Wavelength.wavelength_extract(data, fine, filename=outname,
            flexure_x_corr_nm = flexure_x_corr_nm,
            flexure_y_corr_pix= flexure_y_corr_pix,
            flat_corrections=flat_corrections)
            
        np.save(exfile, [E, meta])
    else:
        E, meta = np.load(exfile)

    return E
예제 #2
0
파일: Extractor.py 프로젝트: nblago/kpy
def handle_Flat(A, fine, outname=None):
    '''Loads 2k x 2k IFU Flat frame "A" and extracts spectra from the locations
    in "fine".

    Args:
        A (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to

    Returns:

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%s" % (A)

    if os.path.isfile(outname+".npy"):
        print "Extractions already exist in %s.npy!" % outname
        print "rm %s.npy # if you want to recreate extractions" % outname
    else:
        print "\nCREATING extractions ..."
        spec = pf.open(A)

        print "\nExtracting object spectra"
        E, meta = Wavelength.wavelength_extract(spec, fine, filename=outname,
            flexure_x_corr_nm=0., flexure_y_corr_pix=0.)
        meta['airmass'] = spec[0].header['airmass']
        header = {}
        for k,v in spec[0].header.iteritems():
            try: header[k] = v
            except: pass
        meta['HA'] = spec[0].header['HA']
        meta['Dec'] = spec[0].header['Dec']
        meta['RA'] = spec[0].header['RA']
        meta['PRLLTC'] = spec[0].header['PRLLTC']
        meta['equinox'] = spec[0].header['Equinox']
        meta['utc'] = spec[0].header['utc']

        meta['header'] = header

        meta['exptime'] = spec[0].header['exptime']
        np.save(outname, [E, meta])
예제 #3
0
def handle_extract(data,
                   outname=None,
                   fine='fine.npy',
                   flexure_x_corr_nm=0.0,
                   flexure_y_corr_pix=0.0):

    exfile = "extracted_%s.npy" % outname
    if not os.path.exists(outname + ".npy"):
        E = Wavelength.wavelength_extract(
            data,
            fine,
            filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm,
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections=flat_corrections)

        np.save(exfile, [E, meta])
    else:
        E, meta = np.load(exfile)

    return E
예제 #4
0
파일: Cube.py 프로젝트: kvyh/kpy
def QR_to_img(exts, Size=4, outname="cube.fits"):
    """Convert a data cube to a fits image

    Args:
        exts (list of Extraction): extractions to convert (see Extraction.py)
        Size (int): expansion factor, defaults to 4
        outname (str): output fits file name, defaults to cube.fits

    Returns:
        None

    """

    Xs = np.array([ext.X_as for ext in exts], dtype=np.float)
    Ys = np.array([ext.Y_as for ext in exts], dtype=np.float)

    minx = Size * np.nanmin(Xs)
    miny = Size * np.nanmin(Ys)
    maxx = Size * np.nanmax(Xs)
    maxy = Size * np.nanmax(Ys)

    Dx = (maxx - minx) / .25
    Dy = (maxy - miny) / .25
    l_grid = Wavelength.fiducial_spectrum()
    l_grid = l_grid[::-1]
    dl_grid = np.diff(l_grid)
    l_grid = l_grid[1:]

    img = np.zeros((Dx, Dy, len(l_grid) / 2))
    img[:] = np.nan

    XSz = img.shape[0] / 2
    YSz = img.shape[1] / 2

    allspec = np.zeros((len(exts), len(l_grid) / 2))
    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2]

        allspec[cnt, :] = fi

        x = (ext.X_as - minx) / 0.25
        y = (ext.Y_as - miny) / 0.25

        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

        outstr = "\rX = %+10.5f, Y = %+10.5f" % (x, y)
        print outstr,
        sys.stdout.flush()

    back = np.median(allspec, 0)

    ff = pf.PrimaryHDU(img.T)
    ff.writeto(outname)

    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2] - back

        try:
            x = np.round(Size * np.sqrt(3.) * (ext.Q_ix + ext.R_ix / 2)) + XSz
            y = np.round(Size * 3. / 2. * ext.R_ix) + YSz
        except:
            continue
        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

    ff = pf.PrimaryHDU(img.T)
    ff.writeto("bs_" + outname)
예제 #5
0
파일: Flexure.py 프로젝트: nblago/kpy
def measure_flexure_x(
    fine,
    HDUlist,
    plot=True,
    dY=0,
    skyline=589.0,
    lamstart=1000.0,
    lamratio=239.0 / 240.0,
    lamlen=250,
    extract_width=3,
    skywidth=9,
    outfile="dX",
):
    """Measures flexure in X direction, returns pixel offset

    Args:
        fine: List of Extraction object, the fine loc + wave solution for
            each spectrum
        HDUlist: Pyfits object for the spectrum to measure
        plot: Plot + save results to a file
        dY: the measured pixel flexure in Y direction to account for
        skyline(float): The night skyline to centroid on in nm
        skywidth(float): Fit gaussian to the ROI of (skyline-skywidth to
            skyline+skywidth) in nm.
        extract_width(int): Number of pixels to extract spectrum around
        - See Wavelength.fiducial spectrum for following:
        lamstart: Wavelength to start the grid on, default 1000 nm
        lamratio: Resolution of sed machine
        lamlen: Length of spectrum

    Returns:
        Offset number of pixels in X direction.
    """

    dat = HDUlist[0].data
    exptime = HDUlist[0].header["EXPTIME"]

    spec_ixs = np.arange(500, 1200, 10)
    lamgrid = Wavelength.fiducial_spectrum(lamstart=lamstart, lamratio=lamratio, len=lamlen)

    specgrid = np.zeros((len(lamgrid), len(spec_ixs)))

    for i, ix in enumerate(spec_ixs):
        f = fine[ix]

        # bad fit
        if not f.ok:
            continue
        # noisy fit
        if f.lamnrms > 1:
            continue
        # short spectrum
        if f.xrange[1] - f.xrange[0] < 200:
            continue

        spec = np.zeros(f.xrange[1] - f.xrange[0])
        yfun = np.poly1d(f.poly)

        for jx, xpos in enumerate(np.arange(f.xrange[0], f.xrange[1])):
            ypos = yfun(xpos)

            try:
                spec[jx] = np.sum(dat[ypos - extract_width : ypos + extract_width, xpos])
            except:
                continue

        try:
            ll = f.get_lambda_nm()
        except:
            continue
        specfun = interp1d(ll, spec, bounds_error=False)
        specgrid[:, i] = specfun(lamgrid)

    skyspec = np.median(specgrid, axis=1)
    pl.step(lamgrid, skyspec, where="mid")

    roi = (lamgrid > skyline - skywidth) & (lamgrid < skyline + skywidth)
    ffun = FF.mpfit_residuals(FF.gaussian4)
    parinfo = [
        {"value": np.max(skyspec[roi]), "limited": [1, 0], "limits": [0, 0]},
        {"value": skyline},
        {"value": 3},
        {"value": np.min(skyspec[roi]), "limited": [1, 0], "limits": [0, 0]},
    ]
    fit = FF.mpfit_do(ffun, lamgrid[roi], skyspec[roi], parinfo)
    pl.plot(lamgrid, FF.gaussian4(fit.params, lamgrid))

    pl.savefig(outfile + ".pdf")

    dXnm = fit.params[1] - skyline

    print "dX = %3.2f nm shift" % dXnm

    return dXnm
예제 #6
0
def measure_flexure_x(fine, HDUlist, plot=True, dY=0,
    skyline=589.0, lamstart=1000.0, lamratio=239./240., lamlen=250,
    extract_width=3, skywidth=9, outfile='dX'):
    '''Measures flexure in X direction, returns pixel offset

    Args:
        fine: List of Extraction object, the fine loc + wave solution for
            each spectrum
        HDUlist: Pyfits object for the spectrum to measure
        plot: Plot + save results to a file
        dY: the measured pixel flexure in Y direction to account for
        skyline(float): The night skyline to centroid on in nm
        skywidth(float): Fit gaussian to the ROI of (skyline-skywidth to
            skyline+skywidth) in nm.
        extract_width(int): Number of pixels to extract spectrum around
        - See Wavelength.fiducial spectrum for following:
        lamstart: Wavelength to start the grid on, default 1000 nm
        lamratio: Resolution of sed machine
        lamlen: Length of spectrum

    Returns:
        Offset number of pixels in X direction.
    '''
    
    dat = HDUlist[0].data
    exptime = HDUlist[0].header['EXPTIME']

    spec_ixs = np.arange(500, 1200, 10)
    lamgrid = Wavelength.fiducial_spectrum(lamstart=lamstart,
        lamratio=lamratio, len=lamlen)

    specgrid = np.zeros((len(lamgrid), len(spec_ixs)))
    
    for i,ix in enumerate(spec_ixs):
        f = fine[ix]

        if not f.ok: continue
        if f.lamrms > 1: continue
        if f.xrange[1] - f.xrange[0] < 200: continue

        spec = np.zeros(f.xrange[1] - f.xrange[0])
        yfun = np.poly1d(f.poly)

        for jx,xpos in enumerate(np.arange(f.xrange[0], f.xrange[1])):
            ypos = yfun(xpos)

            try:spec[jx] = np.sum(dat[ypos-extract_width:ypos+extract_width,
                    xpos])
            except: continue

        try:ll = f.get_lambda_nm()
        except: continue
        specfun = interp1d(ll, spec, bounds_error=False)
        specgrid[:,i] = specfun(lamgrid)
            
    skyspec = np.median(specgrid, axis=1)
    pl.step(lamgrid, skyspec, where='mid')

    roi = (lamgrid>skyline-skywidth) & (lamgrid<skyline+skywidth)
    ffun = FF.mpfit_residuals(FF.gaussian4)
    parinfo= [
        {'value': np.max(skyspec[roi]), 'limited': [1,0], 
            'limits': [0, 0]},
        {'value': skyline}, 
        {'value': 3}, 
        {'value': np.min(skyspec[roi]), 'limited': [1,0],
            'limits': [0,0]}]
    fit = FF.mpfit_do(ffun, lamgrid[roi], skyspec[roi], parinfo)
    pl.plot(lamgrid, FF.gaussian4(fit.params, lamgrid))

    pl.savefig(outfile + ".pdf")

    dXnm = fit.params[1] - skyline

    print "dX = %3.2f nm shift" % dXnm


    return dXnm
예제 #7
0
파일: Cube.py 프로젝트: nblago/kpy
import pyfits as pf
import scipy.signal as SG
from scipy.spatial import KDTree 

from numpy.polynomial.chebyshev import chebfit, chebval
from scipy.interpolate import interp1d
import SEDMr.Extraction as Extraction
import SEDMr.Wavelength as Wavelength
import SEDMr.Spectra as SS

import sys
sys.setrecursionlimit(10000)


# reference wavelength for X positions
fid_wave = Wavelength.fiducial_wavelength()

scale = 1.0
H2P = np.array([[np.sqrt(3), np.sqrt(3)/2], [0, 3/2.]]) * scale
P2H = np.array([[np.sqrt(3)/3, -1/3.], [0, 2/3.]]) / scale

# Rotation matrix
theta = np.deg2rad(-37+13.5)
ROT = np.array([[np.cos(theta), -np.sin(theta)], 
                [np.sin(theta),  np.cos(theta)]])


'''

See figures here:
예제 #8
0
파일: Extracter.py 프로젝트: nblago/kpy
def handle_AB(A, B, fine, outname=None, corrfile=None,
    Aoffset=None, Boffset=None, radius=2, flat_corrections=None,
    nosky=False, lmin=650, lmax=700):
    '''Loads 2k x 2k IFU frame "A" and "B" and extracts A-B and A+B spectra
    from the "fine" location. 

    Args:
        A (string): filename of ifu FITS file to extract from.
        B (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to
        Aoffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        Boffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        radius (float): Extraction radius in arcsecond
        flat_corrections (list): A list of FlatCorrection objects for
            correcting the extraction
	nosky (Boolean): if True don't subtract sky, merely sum in aperture

    Returns:
        The extracted spectrum, a dictionary:
        {'ph_10m_nm': Flux in photon / 10 m / nanometer integrated
        'var'
        'nm': Wavelength solution in nm
        'N_spaxA': Total number of "A" spaxels 
        'N_spaxB': Total number of "B" spaxels
        'skyph': Sky flux in photon / 10 m / nanometer / spaxel
        'radius_as': Extraction radius in arcsec
        'pos': X/Y extraction location of spectrum in arcsec}

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%sm%s" % (A,B)

    if Aoffset is not None:
        ff = np.load(Aoffset)
        flexure_x_corr_nm = ff[0]['dXnm']
        flexure_y_corr_pix = -ff[0]['dYpix']

        print "Dx %2.1f | Dy %2.1f" % (ff[0]['dXnm'], ff[0]['dYpix'])
    else:
        flexure_x_corr_nm = 0
        flexure_y_corr_pix = 0

    read_var = 5*5
    if os.path.isfile(outname + ".fits.npy"):
        print "USING extractions in %s!" % outname
        E, meta = np.load(outname + ".fits.npy")
        E_var, meta_var = np.load("var_" + outname + ".fits.npy")
    else:
        if not outname.endswith(".fits"): 
            outname = outname + ".fits"
            diff = subtract(A,B, outname)
            add(A,B, "tmpvar_" + outname)

            adcspeed = diff[0].header["ADCSPEED"]
            if adcspeed == 2: read_var = 22*22
            else: read_var = 5*5

        var = add("tmpvar_" + outname, str(read_var), "var_" + outname)
        os.remove("tmpvar_" + outname + ".gz")


        E, meta = Wavelength.wavelength_extract(diff, fine, 
            filename=outname,
            flexure_x_corr_nm = flexure_x_corr_nm, 
            flexure_y_corr_pix = flexure_y_corr_pix,
            flat_corrections=flat_corrections)
        meta['airmass1'] = diff[0].header['airmass1']
        meta['airmass2'] = diff[0].header['airmass2']
        meta['airmass'] = diff[0].header['airmass']
        header = {}
        for k,v in diff[0].header.iteritems():
            try: header[k] = v
            except: pass
        meta['HA'] = diff[0].header['HA']
        meta['Dec'] = diff[0].header['Dec']
        meta['RA'] = diff[0].header['RA']
        meta['PRLLTC'] = diff[0].header['PRLLTC']
        meta['equinox'] = diff[0].header['Equinox']
        meta['utc'] = diff[0].header['utc']

        meta['header'] = header

        meta['exptime'] = diff[0].header['exptime']
        np.save(outname, [E, meta])

        exfile = "extracted_var_%s.npy" % outname
        E_var, meta_var = Wavelength.wavelength_extract(var, fine, 
            filename=outname,
            flexure_x_corr_nm = flexure_x_corr_nm, 
            flexure_y_corr_pix = flexure_y_corr_pix,
            flat_corrections=flat_corrections)

        np.save("var_" + outname, [E_var, meta_var])

    sixA, posA, all_A = identify_spectra_gui(E, radius=radius, 
        PRLLTC=Angle(meta['PRLLTC'], unit='deg'),
        lmin=lmin, lmax=lmax, airmass=meta['airmass'])
    sixB, posB, all_B = identify_spectra_gui(E, radius=radius,
        PRLLTC=Angle(meta['PRLLTC'], unit='deg'),
        lmin=lmin, lmax=lmax, airmass=meta['airmass'])

    to_image(E, meta, outname, posA=posA, posB=posB, adcpos=all_A)

    skyA = identify_bgd_spectra(E, posA)
    skyB = identify_bgd_spectra(E, posB)

    allix = np.concatenate([sixA, sixB])
    resA = interp_spectra(E, sixA, sign=1, outname=outname+"_A.pdf", corrfile=corrfile)
    resB = interp_spectra(E, sixB, sign=-1, outname=outname+"_B.pdf", corrfile=corrfile)
    skyA = interp_spectra(E, skyA, sign=1, outname=outname+"_skyA.pdf", corrfile=corrfile)
    skyB = interp_spectra(E, skyB, sign=-1, outname=outname+"_skYB.pdf", corrfile=corrfile)
    varA = interp_spectra(E_var, sixA, sign=1, outname=outname+"_A_var.pdf", corrfile=corrfile)
    varB = interp_spectra(E_var, sixB, sign=1, outname=outname+"_B_var.pdf", corrfile=corrfile)
    
    
    ## Plot out the X/Y selected spectra
    XSA = []
    YSA = []
    XSB = []
    YSB = []
    for ix in sixA:
        XSA.append(E[ix].X_as)
        YSA.append(E[ix].Y_as)
    for ix in sixB:
        XSB.append(E[ix].X_as)
        YSB.append(E[ix].Y_as)

    pl.figure()
    pl.clf()
    pl.ylim(-30,30)
    pl.xlim(-30,30)
    pl.scatter(XSA,YSA, color='blue', marker='H', linewidth=.1)
    pl.scatter(XSB,YSB, color='red', marker='H', linewidth=.1)
    pl.savefig("XYs_%s.pdf" % outname)
    pl.close()
    # / End Plot

    np.save("sp_A_" + outname, resA)
    np.save("sp_B_" + outname, resB)
    np.save("var_A_" + outname, varA)
    np.save("var_B_" + outname, varB)

    ll = Wavelength.fiducial_spectrum()
    sky_A = interp1d(skyA[0]['nm'], skyA[0]['ph_10m_nm'], bounds_error=False)
    sky_B = interp1d(skyB[0]['nm'], skyB[0]['ph_10m_nm'], bounds_error=False)
    sky = np.nanmean([sky_A(ll), sky_B(ll)], axis=0)

    var_A = interp1d(varA[0]['nm'], varA[0]['ph_10m_nm'], bounds_error=False)
    var_B = interp1d(varB[0]['nm'], varB[0]['ph_10m_nm'], bounds_error=False)
    varspec = np.nanmean([var_A(ll), var_B(ll)], axis=0) * (len(sixA) + len(sixB))

    res = np.copy(resA)
    res = [{"doc": resA[0]["doc"], "ph_10m_nm": np.copy(resA[0]["ph_10m_nm"]),
        "nm": np.copy(resA[0]["ph_10m_nm"])}]
    res[0]['nm'] = np.copy(ll)
    f1 = interp1d(resA[0]['nm'], resA[0]['ph_10m_nm'], bounds_error=False)
    f2 = interp1d(resB[0]['nm'], resB[0]['ph_10m_nm'], bounds_error=False)

    airmassA = meta['airmass1']
    airmassB = meta['airmass2']

    extCorrA = 10**(Atm.ext(ll*10)*airmassA/2.5)
    extCorrB = 10**(Atm.ext(ll*10)*airmassB/2.5)
    print "Median airmass corr: ", np.median(extCorrA), np.median(extCorrB)
    # If requested merely sum in aperture, otherwise subtract sky
    if nosky:
    	res[0]['ph_10m_nm'] = \
        	np.nansum([
            	f1(ll) * extCorrA, 
            	f2(ll) * extCorrB], axis=0) * \
            	(len(sixA) + len(sixB))
    else:
    	res[0]['ph_10m_nm'] = \
        	np.nansum([
            	(f1(ll)-sky_A(ll)) * extCorrA, 
            	(f2(ll)-sky_B(ll)) * extCorrB], axis=0) * \
            	(len(sixA) + len(sixB))

    res[0]['exptime'] = meta['exptime']
    res[0]['Extinction Correction'] = 'Applied using Hayes & Latham'
    res[0]['extinction_corr_A'] = extCorrA
    res[0]['extinction_corr_B'] = extCorrB
    res[0]['skyph'] = sky
    res[0]['var'] = varspec
    res[0]['radius_as'] = radius
    res[0]['positionA'] = posA
    res[0]['positionB'] = posA
    res[0]['N_spaxA'] = len(sixA)
    res[0]['N_spaxB'] = len(sixB)
    res[0]['meta'] = meta
    res[0]['object_spaxel_ids_A'] = sixA
    res[0]['sky_spaxel_ids_A'] = skyA 
    res[0]['object_spaxel_ids_B'] = sixB
    res[0]['sky_spaxel_ids_B'] = skyB

    coef = chebfit(np.arange(len(ll)), ll, 4)
    xs = np.arange(len(ll)+1)
    newll = chebval(xs, coef)

    res[0]['dlam'] = np.diff(newll)

    np.save("sp_" + outname, res)
예제 #9
0
파일: Extracter.py 프로젝트: nblago/kpy
def handle_A(A, fine, outname=None, standard=None, corrfile=None,
    Aoffset=None, radius=2, flat_corrections=None, nosky=False):
    '''Loads 2k x 2k IFU frame "A" and extracts spectra from the locations
    in "fine". 

    Args:
        A (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to
        Aoffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        radius (float): Extraction radius in arcsecond
        flat_corrections (list): A list of FlatCorrection objects for
            correcting the extraction
	nosky (Boolean): if True don't subtract sky, merely sum in aperture

    Returns:
        The extracted spectrum, a dictionary:
        {'ph_10m_nm': Flux in photon / 10 m / nanometer integrated
        'nm': Wavelength solution in nm
        'N_spax': Total number of spaxels that created ph_10m_nm
        'skyph': Sky flux in photon / 10 m / nanometer / spaxel
        'radius_as': Extraction radius in arcsec
        'pos': X/Y extraction location of spectrum in arcsec}

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%s" % (A)

    spec = pf.open(A)

    if Aoffset is not None:
        ff = np.load(Aoffset)
        flexure_x_corr_nm = ff[0]['dXnm']
        flexure_y_corr_pix = ff[0]['dYpix']

        print "Dx %2.1f | Dy %2.1f" % (ff[0]['dXnm'], ff[0]['dYpix'])
    else:
        flexure_x_corr_nm = 0
        flexure_y_corr_pix = 0

    if os.path.isfile(outname+".npy"):
        print "USING extractions in %s!" % outname
        print "rm %s.npy # if you want to recreate extractions" % outname
        E, meta = np.load(outname+".npy")
    else:
        print "CREATING extractions ..."
        E, meta = Wavelength.wavelength_extract(spec, fine, filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm, 
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections = flat_corrections)

        meta['airmass'] = spec[0].header['airmass']
        header = {}
        for k,v in spec[0].header.iteritems():
            try: header[k] = v
            except: pass
        meta['HA'] = spec[0].header['HA']
        meta['Dec'] = spec[0].header['Dec']
        meta['RA'] = spec[0].header['RA']
        meta['PRLLTC'] = spec[0].header['PRLLTC']
        meta['equinox'] = spec[0].header['Equinox']
        meta['utc'] = spec[0].header['utc']

        meta['header'] = header

        np.save(outname, [E, meta])

    '''six, pos, adcpos = identify_spectra_gui(E, radius=radius, 
        PRLLTC=Angle(meta['PRLLTC'], unit='deg'), 
        lmin=650, lmax=700, airmass=meta['airmass'])'''

    six, pos, adcpos = identify_spectra_Gauss_fit(E, outname=outname, radius=radius, 
        PRLLTC=Angle(meta['PRLLTC'], unit='deg'), 
        lmin=650, lmax=700, airmass=meta['airmass'])
        
    skyix = identify_bgd_spectra(E, pos, inner=radius*1.1)
    res = interp_spectra(E, six, outname=outname+".pdf", corrfile=corrfile)
    sky = interp_spectra(E, skyix, onto=res[0]['nm'], outname=outname+"_sky.pdf", corrfile=corrfile)
    
    to_image(E, meta, outname, posA=pos, adcpos=adcpos)
    if standard is not None:
        print "STANDARD"
        wav = standard[:,0]/10.0
        flux = standard[:,1]

        fun = interp1d(wav, flux, bounds_error=False, fill_value = np.nan)
        correction = fun(res[0]['nm'])/res[0]['ph_10m_nm']

        res[0]['std-correction'] = correction


    airmass = meta['airmass']
    extCorr = 10**(Atm.ext(res[0]['nm']*10) * airmass/2.5)
    print "Median airmass corr: ", np.nanmedian(extCorr)

    ff = interp1d(sky[0]['nm'], sky[0]['ph_10m_nm'], bounds_error=False)
    skybgd = ff(res[0]['nm'])

    res[0]['exptime'] = spec[0].header['exptime']
    res[0]['Extinction Correction'] = 'Applied using Hayes & Latham'
    res[0]['extinction_corr'] = extCorr
    res[0]['skynm'] = sky[0]['nm']
    res[0]['skyph'] = sky[0]['ph_10m_nm']

    if not nosky:
    	res[0]['ph_10m_nm'] -= skybgd 
    res[0]['ph_10m_nm'] *= extCorr * len(six)

    res[0]['radius_as'] = radius
    res[0]['position'] = pos
    res[0]['N_spax'] = len(six)
    res[0]['meta'] = meta
    res[0]['object_spaxel_ids'] = six
    res[0]['sky_spaxel_ids'] = skyix
    res[0]['sky_spectra'] = sky[0]['spectra']

    np.save("sp_" + outname, res)
예제 #10
0
def handle_AB(A,
              B,
              fine,
              outname=None,
              corrfile=None,
              Aoffset=None,
              Boffset=None,
              radius=2,
              flat_corrections=None,
              lmin=650,
              lmax=700):
    '''Loads 2k x 2k IFU frame "A" and "B" and extracts A-B and A+B spectra
    from the "fine" location. 

    Args:
        A (string): filename of ifu FITS file to extract from.
        B (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to
        Aoffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        Boffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        radius (float): Extraction radius in arcsecond
        flat_corrections (list): A list of FlatCorrection objects for
            correcting the extraction

    Returns:
        The extracted spectrum, a dictionary:
        {'ph_10m_nm': Flux in photon / 10 m / nanometer integrated
        'var'
        'nm': Wavelength solution in nm
        'N_spaxA': Total number of "A" spaxels 
        'N_spaxB': Total number of "B" spaxels
        'skyph': Sky flux in photon / 10 m / nanometer / spaxel
        'radius_as': Extraction radius in arcsec
        'pos': X/Y extraction location of spectrum in arcsec}

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%sm%s" % (A, B)

    if Aoffset is not None:
        ff = np.load(Aoffset)
        f2 = np.load(Aoffset)
        flexure_x_corr_nm = ff[0]['dXnm']
        flexure_y_corr_pix = -ff[0]['dYpix']

        print "Dx %2.1f, %2.1f | Dy %2.1f %2.1f" % (
            ff[0]['dXnm'], f2[0]['dXnm'], ff[0]['dYpix'], f2[0]['dYpix'])
    else:
        flexure_x_corr_nm = 0
        flexure_y_corr_pix = 0

    read_var = 5 * 5
    if os.path.isfile(outname + ".fits.npy"):
        print "USING extractions in %s!" % outname
        E, meta = np.load(outname + ".fits.npy")
        E_var, meta_var = np.load("var_" + outname + ".fits.npy")
    else:
        if not outname.endswith(".fits"):
            outname = outname + ".fits"
            diff = subtract(A, B, outname)
            add(A, B, "tmpvar_" + outname)

            adcspeed = diff[0].header["ADCSPEED"]
            if adcspeed == 2: read_var = 22 * 22
            else: read_var = 5 * 5

        var = add("tmpvar_" + outname, str(read_var), "var_" + outname)
        os.remove("tmpvar_" + outname + ".gz")

        E, meta = Wavelength.wavelength_extract(
            diff,
            fine,
            filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm,
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections=flat_corrections)
        meta['airmass1'] = diff[0].header['airmass1']
        meta['airmass2'] = diff[0].header['airmass2']
        meta['airmass'] = diff[0].header['airmass']
        header = {}
        for k, v in diff[0].header.iteritems():
            try:
                header[k] = v
            except:
                pass
        meta['HA'] = diff[0].header['HA']
        meta['Dec'] = diff[0].header['Dec']
        meta['RA'] = diff[0].header['RA']
        meta['PRLLTC'] = diff[0].header['PRLLTC']
        meta['equinox'] = diff[0].header['Equinox']
        meta['utc'] = diff[0].header['utc']

        meta['header'] = header

        meta['exptime'] = diff[0].header['exptime']
        np.save(outname, [E, meta])

        exfile = "extracted_var_%s.npy" % outname
        E_var, meta_var = Wavelength.wavelength_extract(
            var,
            fine,
            filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm,
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections=flat_corrections)

        np.save("var_" + outname, [E_var, meta_var])

    sixA, posA, all_A = identify_spectra_gui(E,
                                             radius=radius,
                                             PRLLTC=Angle(meta['PRLLTC'],
                                                          unit='deg'),
                                             lmin=lmin,
                                             lmax=lmax,
                                             airmass=meta['airmass'])
    sixB, posB, all_B = identify_spectra_gui(E,
                                             radius=radius,
                                             PRLLTC=Angle(meta['PRLLTC'],
                                                          unit='deg'),
                                             lmin=lmin,
                                             lmax=lmax,
                                             airmass=meta['airmass'])

    to_image(E, meta, outname, posA=posA, posB=posB, adcpos=all_A)

    skyA = identify_bgd_spectra(E, posA)
    skyB = identify_bgd_spectra(E, posB)

    allix = np.concatenate([sixA, sixB])
    resA = interp_spectra(E,
                          sixA,
                          sign=1,
                          outname=outname + "_A.pdf",
                          corrfile=corrfile)
    resB = interp_spectra(E,
                          sixB,
                          sign=-1,
                          outname=outname + "_B.pdf",
                          corrfile=corrfile)
    skyA = interp_spectra(E,
                          skyA,
                          sign=1,
                          outname=outname + "_skyA.pdf",
                          corrfile=corrfile)
    skyB = interp_spectra(E,
                          skyB,
                          sign=-1,
                          outname=outname + "_skYB.pdf",
                          corrfile=corrfile)
    varA = interp_spectra(E_var,
                          sixA,
                          sign=1,
                          outname=outname + "_A_var.pdf",
                          corrfile=corrfile)
    varB = interp_spectra(E_var,
                          sixB,
                          sign=1,
                          outname=outname + "_B_var.pdf",
                          corrfile=corrfile)

    ## Plot out the X/Y selected spectra
    XSA = []
    YSA = []
    XSB = []
    YSB = []
    for ix in sixA:
        XSA.append(E[ix].X_as)
        YSA.append(E[ix].Y_as)
    for ix in sixB:
        XSB.append(E[ix].X_as)
        YSB.append(E[ix].Y_as)

    pl.figure()
    pl.clf()
    pl.ylim(-30, 30)
    pl.xlim(-30, 30)
    pl.scatter(XSA, YSA, color='blue', marker='H', linewidth=.1)
    pl.scatter(XSB, YSB, color='red', marker='H', linewidth=.1)
    pl.savefig("XYs_%s.pdf" % outname)
    pl.close()
    # / End Plot

    np.save("sp_A_" + outname, resA)
    np.save("sp_B_" + outname, resB)
    np.save("var_A_" + outname, varA)
    np.save("var_B_" + outname, varB)

    ll = Wavelength.fiducial_spectrum()
    sky_A = interp1d(skyA[0]['nm'], skyA[0]['ph_10m_nm'], bounds_error=False)
    sky_B = interp1d(skyB[0]['nm'], skyB[0]['ph_10m_nm'], bounds_error=False)
    sky = np.nanmean([sky_A(ll), sky_B(ll)], axis=0)

    var_A = interp1d(varA[0]['nm'], varA[0]['ph_10m_nm'], bounds_error=False)
    var_B = interp1d(varB[0]['nm'], varB[0]['ph_10m_nm'], bounds_error=False)
    varspec = np.nanmean([var_A(ll), var_B(ll)],
                         axis=0) * (len(sixA) + len(sixB))

    res = np.copy(resA)
    res = [{
        "doc": resA[0]["doc"],
        "ph_10m_nm": np.copy(resA[0]["ph_10m_nm"]),
        "nm": np.copy(resA[0]["ph_10m_nm"])
    }]
    res[0]['nm'] = np.copy(ll)
    f1 = interp1d(resA[0]['nm'], resA[0]['ph_10m_nm'], bounds_error=False)
    f2 = interp1d(resB[0]['nm'], resB[0]['ph_10m_nm'], bounds_error=False)

    airmassA = meta['airmass1']
    airmassB = meta['airmass2']

    extCorrA = 10**(Atm.ext(ll * 10) * airmassA / 2.5)
    extCorrB = 10**(Atm.ext(ll * 10) * airmassB / 2.5)
    print "Median airmass corr: ", np.median(extCorrA), np.median(extCorrB)
    res[0]['ph_10m_nm'] = \
        np.nansum([
            (f1(ll)-sky_A(ll)) * extCorrA,
            (f2(ll)-sky_B(ll)) * extCorrB], axis=0) * \
            (len(sixA) + len(sixB))

    res[0]['exptime'] = meta['exptime']
    res[0]['Extinction Correction'] = 'Applied using Hayes & Latham'
    res[0]['extinction_corr_A'] = extCorrA
    res[0]['extinction_corr_B'] = extCorrB
    res[0]['skyph'] = sky
    res[0]['var'] = varspec
    res[0]['radius_as'] = radius
    res[0]['positionA'] = posA
    res[0]['positionB'] = posA
    res[0]['N_spaxA'] = len(sixA)
    res[0]['N_spaxB'] = len(sixB)
    res[0]['meta'] = meta
    res[0]['object_spaxel_ids_A'] = sixA
    res[0]['sky_spaxel_ids_A'] = skyA
    res[0]['object_spaxel_ids_B'] = sixB
    res[0]['sky_spaxel_ids_B'] = skyB

    coef = chebfit(np.arange(len(ll)), ll, 4)
    xs = np.arange(len(ll) + 1)
    newll = chebval(xs, coef)

    res[0]['dlam'] = np.diff(newll)

    np.save("sp_" + outname, res)
예제 #11
0
def handle_A(A,
             fine,
             outname=None,
             standard=None,
             corrfile=None,
             Aoffset=None,
             radius=2,
             flat_corrections=None):
    '''Loads 2k x 2k IFU frame "A" and extracts spectra from the locations
    in "fine". 

    Args:
        A (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to
        Aoffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        radius (float): Extraction radius in arcsecond
        flat_corrections (list): A list of FlatCorrection objects for
            correcting the extraction

    Returns:
        The extracted spectrum, a dictionary:
        {'ph_10m_nm': Flux in photon / 10 m / nanometer integrated
        'nm': Wavelength solution in nm
        'N_spax': Total number of spaxels that created ph_10m_nm
        'skyph': Sky flux in photon / 10 m / nanometer / spaxel
        'radius_as': Extraction radius in arcsec
        'pos': X/Y extraction location of spectrum in arcsec}

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%s" % (A)

    spec = pf.open(A)

    if Aoffset is not None:
        ff = np.load(Aoffset)
        flexure_x_corr_nm = ff[0]['dXnm']
        flexure_y_corr_pix = ff[0]['dYpix']
    else:
        flexure_x_corr_nm = 0
        flexure_y_corr_pix = 0

    if os.path.isfile(outname + ".npy"):
        print "USING extractions in %s!" % outname
        print "rm %s.npy # if you want to recreate extractions" % outname
        E, meta = np.load(outname + ".npy")
    else:
        print "CREATING extractions ..."
        E, meta = Wavelength.wavelength_extract(
            spec,
            fine,
            filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm,
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections=flat_corrections)

        meta['airmass'] = spec[0].header['airmass']
        header = {}
        for k, v in spec[0].header.iteritems():
            try:
                header[k] = v
            except:
                pass
        meta['HA'] = spec[0].header['HA']
        meta['Dec'] = spec[0].header['Dec']
        meta['RA'] = spec[0].header['RA']
        meta['PRLLTC'] = spec[0].header['PRLLTC']
        meta['equinox'] = spec[0].header['Equinox']
        meta['utc'] = spec[0].header['utc']

        meta['header'] = header

        np.save(outname, [E, meta])

    six, pos, adcpos = identify_spectra_gui(E,
                                            radius=radius,
                                            PRLLTC=Angle(meta['PRLLTC'],
                                                         unit='deg'),
                                            lmin=650,
                                            lmax=700,
                                            airmass=meta['airmass'])

    skyix = identify_bgd_spectra(E, pos, inner=radius * 1.1)
    res = interp_spectra(E, six, outname=outname + ".pdf", corrfile=corrfile)
    sky = interp_spectra(E,
                         skyix,
                         onto=res[0]['nm'],
                         outname=outname + "_sky.pdf",
                         corrfile=corrfile)

    to_image(E, meta, outname, posA=pos, adcpos=adcpos)
    if standard is not None:
        print "STANDARD"
        wav = standard[:, 0] / 10.0
        flux = standard[:, 1]

        fun = interp1d(wav, flux, bounds_error=False, fill_value=np.nan)
        correction = fun(res[0]['nm']) / res[0]['ph_10m_nm']

        res[0]['std-correction'] = correction

    airmass = meta['airmass']
    extCorr = 10**(Atm.ext(res[0]['nm'] * 10) * airmass / 2.5)
    print "Median airmass corr: ", np.median(extCorr)

    ff = interp1d(sky[0]['nm'], sky[0]['ph_10m_nm'], bounds_error=False)
    skybgd = ff(res[0]['nm'])

    res[0]['exptime'] = spec[0].header['exptime']
    res[0]['Extinction Correction'] = 'Applied using Hayes & Latham'
    res[0]['extinction_corr'] = extCorr
    res[0]['skynm'] = sky[0]['nm']
    res[0]['skyph'] = sky[0]['ph_10m_nm']

    res[0]['ph_10m_nm'] -= skybgd
    res[0]['ph_10m_nm'] *= extCorr * len(six)

    res[0]['radius_as'] = radius
    res[0]['position'] = pos
    res[0]['N_spax'] = len(six)
    res[0]['meta'] = meta
    res[0]['object_spaxel_ids'] = six
    res[0]['sky_spaxel_ids'] = skyix
    res[0]['sky_spectra'] = sky[0]['spectra']

    np.save("sp_" + outname, res)
예제 #12
0
def measure_flexure_x(cube,
                      hdulist,
                      drow=0.,
                      skylines=(557.0, 589.0),
                      lamstart=1000.0,
                      lamratio=239. / 240.,
                      lamlen=250,
                      extract_width=3,
                      skywidth=9,
                      outfile='dX'):
    """Measures flexure in X direction, returns pixel offset

    Args:
        cube (extraction array): List of Extraction object, the fine loc +
            wave solution for each spectrum
        hdulist (pyfits obj): Pyfits object for the spectrum to measure
        drow (float): offset in rows for flexure (y-axis)
        skylines (float, float): The night skylines to centroid on in nm
        skywidth(float): Fit gaussian to the ROI of (skyline-skywidth to
            skyline+skywidth) in nm.
        extract_width(int): Number of pixels to extract spectrum around
        - See Wavelength.fiducial spectrum for following:
        lamstart (float): Wavelength to start the grid on, default 1000 nm
        lamratio (float): Resolution of sed machine
        lamlen (int): Length of spectrum
        outfile (string): output pdf plot showing fits to skyline(s)

    Returns:
        Offset number of pixels in X direction.
    """

    dat = hdulist[0].data

    spec_ixs = np.arange(500, 1200, 10)
    lamgrid = Wavelength.fiducial_spectrum(lamstart=lamstart,
                                           lamratio=lamratio,
                                           len=lamlen)

    specgrid = np.zeros((len(lamgrid), len(spec_ixs)))

    for i, ix in enumerate(spec_ixs):
        f = cube[ix]

        # bad fit
        if not f.ok:
            continue
        # noisy fit
        if f.lamnrms > 1:
            continue
        # short spectrum
        if f.xrange[1] - f.xrange[0] < 200:
            continue

        spec = np.zeros(f.xrange[1] - f.xrange[0])
        yfun = np.poly1d(f.poly)

        for jx, xpos in enumerate(np.arange(f.xrange[0], f.xrange[1])):
            ypos = yfun(xpos)

            try:
                spec[jx] = np.sum(dat[ypos - extract_width:ypos +
                                      extract_width, xpos])
            except:
                continue

        try:
            ll = f.get_lambda_nm()
        except:
            continue
        specfun = interp1d(ll, spec, bounds_error=False)
        specgrid[:, i] = specfun(lamgrid)

    skyspec = np.median(specgrid, axis=1)
    pl.step(lamgrid, skyspec, where='mid')
    pl.xlabel("Wavelength [nm]")
    pl.ylabel("Spec Irr [ph/10 m/nm]")

    sumoff = 0.
    sumscale = 0.
    legend = ["Sky"]
    for skyline in skylines:
        roi = (lamgrid > skyline - skywidth) & (lamgrid < skyline + skywidth)
        ffun = NFit.mpfit_residuals(NFit.gaussian4)
        parinfo = [{
            'value': np.max(skyspec[roi]),
            'limited': [1, 0],
            'limits': [0, 0]
        }, {
            'value': skyline
        }, {
            'value': 3
        }, {
            'value': np.min(skyspec[roi]),
            'limited': [1, 0],
            'limits': [0, 0]
        }]
        fit = NFit.mpfit_do(ffun, lamgrid[roi], skyspec[roi], parinfo)
        if fit.status == 1:
            off = fit.params[1] - skyline
            sumoff += off * fit.params[0]
            sumscale += fit.params[0]
            pl.plot(lamgrid[roi], NFit.gaussian4(fit.params, lamgrid[roi]))
            dxnm = fit.params[1] - skyline
            legend.append("%.1f, %.2f" % (skyline, off))
        else:
            dxnm = 0.

        print("line = %6.1f (%6.1f), status = %d, dX = %3.2f nm shift" %
              (skyline, fit.params[0], fit.status, dxnm))

    if sumscale > 0.:
        dxnm = sumoff / sumscale
    else:
        print "Warning: no good skylines to fit!  Setting X offset to 0.0 nm"
        dxnm = 0.
    print "dX = %3.2f nm shift" % dxnm

    pl.title("dX = %3.2f nm shift, dY = %3.2f px shift" % (dxnm, drow))
    pl.legend(legend)

    pl.savefig(outfile + ".pdf")

    return dxnm
예제 #13
0
def qr_to_img(exts, size=4, outname="cube.fits"):
    """Convert a data cube to a fits image

    Args:
        exts (list of Extraction): extractions to convert (see Extraction.py)
        size (int): expansion factor, defaults to 4
        outname (str): output fits file name, defaults to cube.fits

    Returns:
        None

    """

    xs = np.array([ex.X_as for ex in exts], dtype=np.float32)
    ys = np.array([ex.Y_as for ex in exts], dtype=np.float32)

    minx = size * np.nanmin(xs)
    miny = size * np.nanmin(ys)
    maxx = size * np.nanmax(xs)
    maxy = size * np.nanmax(ys)

    dx = (maxx - minx) / .25
    dy = (maxy - miny) / .25
    l_grid = Wavelength.fiducial_spectrum()
    l_grid = l_grid[::-1]
    dl_grid = np.diff(l_grid)
    l_grid = l_grid[1:]

    img = np.zeros((dx, dy, len(l_grid) / 2))
    img[:] = np.nan

    xsz = img.shape[0] / 2
    ysz = img.shape[1] / 2

    allspec = np.zeros((len(exts), len(l_grid) / 2))
    for cnt, ex in enumerate(exts):
        if ex.xrange is None:
            continue
        if ex.exptime is None:
            ex.exptime = 1
        if ex.lamcoeff is None:
            continue

        ix = np.arange(*ex.xrange)
        l = chebval(ix, ex.lamcoeff)
        s = ex.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2]

        allspec[cnt, :] = fi

        x = (ex.X_as - minx) / 0.25
        y = (ex.Y_as - miny) / 0.25

        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

        # outstr = "\rX = %+10.5f, Y = %+10.5f" % (x[0], y[0])
        # print(outstr, end="")
        sys.stdout.flush()

    back = np.nanmedian(allspec, 0)

    if 'fits' not in outname:
        outname += '.fits'

    ff = pf.PrimaryHDU(img.T)
    ff.writeto(outname)

    for cnt, ex in enumerate(exts):
        if ex.xrange is None:
            continue
        if ex.exptime is None:
            ex.exptime = 1
        if ex.lamcoeff is None:
            continue

        ix = np.arange(*ex.xrange)
        l = chebval(ix, ex.lamcoeff)
        s = ex.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2] - back

        try:
            x = np.round(size * np.sqrt(3.) * (ex.Q_ix + ex.R_ix / 2)) + xsz
            y = np.round(size * 3. / 2. * ex.R_ix) + ysz
        except:
            continue
        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

    ff = pf.PrimaryHDU(img.T)
    ff.writeto("bs_" + outname)
예제 #14
0
def QR_to_img(exts, Size=4, outname="cube.fits"):

    Xs = np.array([ext.X_as for ext in exts], dtype=np.float)
    Ys = np.array([ext.Y_as for ext in exts], dtype=np.float)

    minx = Size * np.nanmin(Xs)
    miny = Size * np.nanmin(Ys)
    maxx = Size * np.nanmax(Xs)
    maxy = Size * np.nanmax(Ys)

    Dx = (maxx - minx) / .25
    Dy = (maxy - miny) / .25
    l_grid = Wavelength.fiducial_spectrum()
    l_grid = l_grid[::-1]
    dl_grid = np.diff(l_grid)
    l_grid = l_grid[1:]

    img = np.zeros((Dx, Dy, len(l_grid) / 2))
    img[:] = np.nan

    XSz = img.shape[0] / 2
    YSz = img.shape[1] / 2

    allspec = np.zeros((len(exts), len(l_grid) / 2))
    for cnt, ext in enumerate(exts):
        if ext.xrange is None: continue
        if ext.exptime is None: ext.exptime = 1
        if ext.lamcoeff is None: continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2]

        allspec[cnt, :] = fi

        x = (ext.X_as - minx) / 0.25
        y = (ext.Y_as - miny) / 0.25

        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

        print x, y

    back = np.median(allspec, 0)

    ff = pf.PrimaryHDU(img.T)
    ff.writeto(outname)

    for cnt, ext in enumerate(exts):
        if ext.xrange is None: continue
        if ext.exptime is None: ext.exptime = 1
        if ext.lamcoeff is None: continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2] - back

        try:
            x = np.round(Size * np.sqrt(3.) * (ext.Q_ix + ext.R_ix / 2)) + XSz
            y = np.round(Size * 3. / 2. * ext.R_ix) + YSz
        except:
            continue
        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

    ff = pf.PrimaryHDU(img.T)
    ff.writeto("bs_" + outname)
예제 #15
0
파일: Extractor.py 프로젝트: nblago/kpy
def handle_A(A, fine, outname=None, standard=None, corrfile=None,
    Aoffset=None, radius=2, flat_corrections=None, nosky=False,
    lmin=650, lmax=700):
    '''Loads 2k x 2k IFU frame "A" and extracts spectra from the locations
    in "fine".

    Args:
        A (string): filename of ifu FITS file to extract from.
        fine (string): filename of NumPy file with locations + wavelength
            soln
        outname (string): filename to write results to
        Aoffset (2tuple): X (nm)/Y (pix) shift to apply for flexure correction
        radius (float): Extraction radius in arcsecond
        flat_corrections (list): A list of FlatCorrection objects for
            correcting the extraction
        nosky (Boolean): if True don't subtract sky, merely sum in aperture

    Returns:
        The extracted spectrum, a dictionary:
        {'ph_10m_nm': Flux in photon / 10 m / nanometer integrated
        'nm': Wavelength solution in nm
        'N_spax': Total number of spaxels that created ph_10m_nm
        'skyph': Sky flux in photon / 10 m / nanometer / spaxel
        'radius_as': Extraction radius in arcsec
        'pos': X/Y extraction location of spectrum in arcsec}

    Raises:
        None
    '''

    fine = np.load(fine)
    if outname is None:
        outname = "%s" % (A)

    if Aoffset is not None:
        ff = np.load(Aoffset)
        flexure_x_corr_nm = ff[0]['dXnm']
        flexure_y_corr_pix = ff[0]['dYpix']

        print "Dx %2.1f nm | Dy %2.1f px" % (ff[0]['dXnm'], ff[0]['dYpix'])
    else:
        flexure_x_corr_nm = 0
        flexure_y_corr_pix = 0

    if os.path.isfile(outname+".npy"):
        print "USING extractions in %s.npy!" % outname
        print "rm %s.npy # if you want to recreate extractions" % outname
        E, meta = np.load(outname+".npy")
        E_var, meta_var = np.load("var_" + outname + ".npy")
    else:
        print "\nCREATING extractions ..."
        spec = pf.open(A)

        adcspeed = spec[0].header["ADCSPEED"]
        if adcspeed == 2: read_var = 22*22
        else: read_var = 5*5

        var = addcon(A, str(read_var), "var_" + outname + ".fits")

        print "\nExtracting object spectra"
        E, meta = Wavelength.wavelength_extract(spec, fine, filename=outname,
            flexure_x_corr_nm=flexure_x_corr_nm,
            flexure_y_corr_pix=flexure_y_corr_pix,
            flat_corrections = flat_corrections)
        meta['airmass'] = spec[0].header['airmass']
        header = {}
        for k,v in spec[0].header.iteritems():
            try: header[k] = v
            except: pass
        meta['HA'] = spec[0].header['HA']
        meta['Dec'] = spec[0].header['Dec']
        meta['RA'] = spec[0].header['RA']
        meta['PRLLTC'] = spec[0].header['PRLLTC']
        meta['equinox'] = spec[0].header['Equinox']
        meta['utc'] = spec[0].header['utc']

        meta['header'] = header

        meta['exptime'] = spec[0].header['exptime']
        np.save(outname, [E, meta])

        print "\nExtracting variance spectra"
        E_var, meta_var = Wavelength.wavelength_extract(var, fine,
            filename=outname,
            flexure_x_corr_nm = flexure_x_corr_nm,
            flexure_y_corr_pix = flexure_y_corr_pix,
            flat_corrections=flat_corrections)

        np.save("var_" + outname, [E_var, meta_var])

    object = meta['header']['OBJECT'].split()[0]

    sixA, posA, adcpos, radius_used = identify_spectra_gui(E, radius=radius,
        PRLLTC=Angle(meta['PRLLTC'], unit='deg'),
        lmin=lmin, lmax=lmax, object=object, airmass=meta['airmass'])

    to_image(E, meta, outname, posA=posA, adcpos=adcpos)

    if standard is None:
        kixA = identify_bgd_spectra(E, posA, inner=radius_used*1.1)
    else:
        kixA = identify_sky_spectra(E, posA, inner=radius_used*1.1)

    # get the mean spectrum over the selected spaxels
    resA = interp_spectra(E, sixA, outname=outname+".pdf", corrfile=corrfile)
    skyA = interp_spectra(E, kixA, outname=outname+"_sky.pdf", corrfile=corrfile)
    varA = interp_spectra(E_var, sixA, outname=outname+"_var.pdf", corrfile=corrfile)

    ## Plot out the X/Y positions of the selected spaxels
    XSA = []
    YSA = []
    XSK = []
    YSK = []
    for ix in sixA:
        XSA.append(E[ix].X_as)
        YSA.append(E[ix].Y_as)
    for ix in kixA:
        XSK.append(E[ix].X_as)
        YSK.append(E[ix].Y_as)

    pl.figure()
    pl.clf()
    pl.ylim(-30,30)
    pl.xlim(-30,30)
    pl.scatter(XSA,YSA, color='red', marker='H', linewidth=.1)
    pl.scatter(XSK,YSK, color='green', marker='H', linewidth=.1)
    pl.savefig("XYs_%s.pdf" % outname)
    pl.close()
    # / End Plot

    # Define our standard wavelength grid
    ll = Wavelength.fiducial_spectrum()

    # Resample sky onto standard wavelength grid
    sky_A = interp1d(skyA[0]['nm'], skyA[0]['ph_10m_nm'], bounds_error=False)
    sky = sky_A(ll)

    # Resample variance onto standard wavelength grid
    var_A = interp1d(varA[0]['nm'], varA[0]['ph_10m_nm'], bounds_error=False)
    varspec = var_A(ll)

    # Copy and resample object spectrum onto standard wavelength grid
    res = np.copy(resA)
    res = [{"doc": resA[0]["doc"], "ph_10m_nm": np.copy(resA[0]["ph_10m_nm"]),
        "spectra": np.copy(resA[0]["spectra"]),
        "coefficients": np.copy(resA[0]["coefficients"]),
        "nm": np.copy(resA[0]["ph_10m_nm"])}]
    res[0]['nm'] = np.copy(ll)
    f1 = interp1d(resA[0]['nm'], resA[0]['ph_10m_nm'], bounds_error=False)

    # Calculate airmass correction
    airmass = meta['airmass']

    extCorr = 10**(Atm.ext(ll*10) * airmass/2.5)
    print "Median airmass corr: %.4f" % np.median(extCorr)

    # Calculate output corrected spectrum
    if nosky:
        # Account for airmass and aperture
        res[0]['ph_10m_nm'] = f1(ll) * extCorr * len(sixA)
    else:
        # Account for sky, airmass and aperture
        res[0]['ph_10m_nm'] = (f1(ll)-sky_A(ll)) * extCorr * len(sixA)

    # Process standard star objects
    if standard is not None:
        print "STANDARD"

        # Extract reference data
        wav = standard[:,0]/10.0
        flux = standard[:,1]

        # Calculate/Interpolate correction onto object wavelengths
        fun = interp1d(wav, flux, bounds_error=False, fill_value = np.nan)
        correction0 = fun(res[0]['nm'])/res[0]['ph_10m_nm']

        # Filter for resolution
        flxf = filters.gaussian_filter(flux,19.)

        # Calculate/Interpolate filtered correction
        fun = interp1d(wav, flxf, bounds_error=False, fill_value = np.nan)
        correction = fun(res[0]['nm'])/res[0]['ph_10m_nm']

        # Use unfiltered for H-beta region
        ROI = (res[0]['nm'] > 470.) & (res[0]['nm'] < 600.)
        correction[ROI] = correction0[ROI]

        res[0]['std-correction'] = correction
        res[0]['std-maxnm'] = np.max(wav)


    res[0]['exptime'] = meta['exptime']
    res[0]['Extinction Correction'] = 'Applied using Hayes & Latham'
    res[0]['extinction_corr'] = extCorr
    res[0]['skyph'] = sky * len(sixA)
    res[0]['skynm'] = ll
    res[0]['var'] = varspec
    res[0]['radius_as'] = radius_used
    res[0]['position'] = posA
    res[0]['N_spax'] = len(sixA)
    res[0]['meta'] = meta
    res[0]['object_spaxel_ids'] = sixA
    res[0]['sky_spaxel_ids'] = kixA
    res[0]['sky_spectra'] = skyA[0]['spectra']

    coef = chebfit(np.arange(len(ll)), ll, 4)
    xs = np.arange(len(ll)+1)
    newll = chebval(xs, coef)

    res[0]['dlam'] = np.diff(newll)

    np.save("sp_" + outname, res)
    print "Wrote sp_"+outname+".npy"
예제 #16
0
파일: Flexure.py 프로젝트: scizen9/kpy
def measure_flexure_x(cube, hdulist, drow=0., skylines=(557.0, 589.0),
                      lamstart=1000.0, lamratio=239./240., lamlen=250,
                      extract_width=3, skywidth=9, outfile='dX', plot=False):
    """Measures flexure in X direction, returns pixel offset

    Args:
        cube (extraction array): List of Extraction object, the fine loc +
            wave solution for each spectrum
        hdulist (pyfits obj): Pyfits object for the spectrum to measure
        drow (float): offset in rows for flexure (y-axis)
        skylines (float, float): The night skylines to centroid on in nm

        - See Wavelength.fiducial spectrum for following:
        lamstart (float): Wavelength to start the grid on, default 1000 nm
        lamratio (float): Resolution of sed machine
        lamlen (int): Length of spectrum

        extract_width(int): Number of pixels to extract spectrum around

        skywidth(float): Fit gaussian to the ROI of skyline+-skywidth in nm.
        outfile (string): output pdf plot showing fits to skyline(s)
        plot (bool): set to True to show plot, else plot to pdf file

    Returns:
        Offset number of pixels in X direction.
    """

    # read in image
    dat = hdulist[0].data
    # select 70 representative spaxels
    spec_ixs = np.arange(500, 1200, 10)
    # fiducial wavelength grid
    lamgrid = Wavelength.fiducial_spectrum(lamstart=lamstart,
                                           lamratio=lamratio, len=lamlen)
    # initialize grid of spaxel spectra
    specgrid = np.zeros((len(lamgrid), len(spec_ixs)))

    # loop over selected spaxels
    for i, ix in enumerate(spec_ixs):
        # get spaxel
        f = cube[ix]

        # skip baddies
        # bad fit
        if not f.ok:
            continue
        # noisy fit
        if f.lamnrms > 1:
            continue
        # short spectrum
        if f.xrange[1] - f.xrange[0] < 200:
            continue

        # set up spectral vector for this spaxel
        spec = np.zeros(f.xrange[1] - f.xrange[0])
        yfun = np.poly1d(f.poly)

        # loop over x positions in spaxel
        for jx, xpos in enumerate(np.arange(f.xrange[0], f.xrange[1])):

            # get y position on image
            ypos = yfun(xpos)

            # extract spectrum from image
            try:
                spec[jx] = np.sum(dat[ypos-extract_width:ypos+extract_width,
                                  xpos])
            except:
                continue

        # get wavelengths of spaxel
        try:
            ll = f.get_lambda_nm()
        except:
            continue

        # resample spectrum on fiducial wavelength grid
        specfun = interp1d(ll, spec, bounds_error=False)
        # insert into grid of spaxel spectra
        specgrid[:, i] = specfun(lamgrid)

    # create a median spectrum from spaxel grid
    # taking a median minimizes impact of objects in sample
    skyspec = np.median(specgrid, axis=1)

    # plot resulting sky spectrum
    pl.step(lamgrid, skyspec, where='mid')
    pl.xlabel("Wavelength [nm]")
    pl.ylabel("Spec Irr [ph/10 m/nm]")
    legend = ["Sky"]

    # accumulate average offsets from known sky lines
    sumoff = 0.
    sumscale = 0.
    minsig = 10000.

    # loop over input sky lines
    for skyline in skylines:

        # extract a wavelength window around sky line
        roi = (lamgrid > skyline-skywidth) & (lamgrid < skyline+skywidth)
        # prepare for Gaussian fit
        ffun = NFit.mpfit_residuals(NFit.gaussian4)
        # initial setup of fit
        parinfo = [
            {'value': np.max(skyspec[roi]), 'limited': [1, 0],
             'limits': [0, 0]},
            {'value': skyline},
            {'value': 3},
            {'value': np.min(skyspec[roi]), 'limited': [1, 0],
             'limits': [0, 0]}]
        # do the fit
        fit = NFit.mpfit_do(ffun, lamgrid[roi], skyspec[roi], parinfo)
        # did the fit succeed?
        if fit.status == 1 and fit.params[2] > 0.:
            off = fit.params[1] - skyline
            sumoff += off * fit.params[0]
            sumscale += fit.params[0]
            if fit.params[2] < minsig:
                minsig = fit.params[2]
            pl.plot(lamgrid[roi], NFit.gaussian4(fit.params, lamgrid[roi]))
            dxnm = fit.params[1] - skyline
            legend.append("%.1f, %.2f" % (skyline, off))
        else:
            dxnm = 0.

        print("line = %6.1f (%6.1f), FWHM = %.2f nm, status = %d, dX = %3.2f nm shift" %
              (skyline, fit.params[0], fit.params[2]*2.354, fit.status, dxnm))

    if sumscale > 0.:
        dxnm = sumoff / sumscale
    else:
        print "Warning: no good skylines to fit!  Setting X offset to 0.0 nm"
        dxnm = 0.
        minsig = 0.
    print "dX = %3.2f nm shift" % dxnm

    pl.title("dX = %3.2f nm shift, dY = %3.2f px shift" % (dxnm, drow))
    pl.legend(legend)

    if plot:
        pl.show()
    else:
        pl.savefig(outfile + ".pdf")

    # return offset and best FWHM
    return dxnm, minsig*2.354
예제 #17
0
파일: Cube.py 프로젝트: nickkonidaris/kpy
def QR_to_img(exts, Size=4, outname="cube.fits"):

    Xs = np.array([ext.X_as for ext in exts], dtype=np.float)
    Ys = np.array([ext.Y_as for ext in exts], dtype=np.float)

    minx = Size * np.nanmin(Xs)
    miny = Size * np.nanmin(Ys)
    maxx = Size * np.nanmax(Xs)
    maxy = Size * np.nanmax(Ys)

    Dx = (maxx - minx) / 0.25
    Dy = (maxy - miny) / 0.25
    l_grid = Wavelength.fiducial_spectrum()
    l_grid = l_grid[::-1]
    dl_grid = np.diff(l_grid)
    l_grid = l_grid[1:]

    img = np.zeros((Dx, Dy, len(l_grid) / 2))
    img[:] = np.nan

    XSz = img.shape[0] / 2
    YSz = img.shape[1] / 2

    allspec = np.zeros((len(exts), len(l_grid) / 2))
    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0 : len(fi) : 2] + fi[1 : len(fi) : 2]

        allspec[cnt, :] = fi

        x = (ext.X_as - minx) / 0.25
        y = (ext.Y_as - miny) / 0.25

        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

        print x, y

    back = np.median(allspec, 0)

    ff = pf.PrimaryHDU(img.T)
    ff.writeto(outname)

    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0 : len(fi) : 2] + fi[1 : len(fi) : 2] - back

        try:
            x = np.round(Size * np.sqrt(3.0) * (ext.Q_ix + ext.R_ix / 2)) + XSz
            y = np.round(Size * 3.0 / 2.0 * ext.R_ix) + YSz
        except:
            continue
        try:
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x + dx, y + dy, :] = fi
        except:
            pass

    ff = pf.PrimaryHDU(img.T)
    ff.writeto("bs_" + outname)
예제 #18
0
파일: Cube.py 프로젝트: scizen9/kpy
def QR_to_img(exts, Size=4, outname="cube.fits"):
    """Convert a data cube to a fits image

    Args:
        exts (list of Extraction): extractions to convert (see Extraction.py)
        Size (int): expansion factor, defaults to 4
        outname (str): output fits file name, defaults to cube.fits

    Returns:
        None

    """
    
    Xs = np.array([ext.X_as for ext in exts], dtype=np.float)
    Ys = np.array([ext.Y_as for ext in exts], dtype=np.float)

    minx = Size * np.nanmin(Xs)
    miny = Size * np.nanmin(Ys)
    maxx = Size * np.nanmax(Xs)
    maxy = Size * np.nanmax(Ys)

    Dx = (maxx-minx)/.25
    Dy = (maxy-miny)/.25
    l_grid = Wavelength.fiducial_spectrum()
    l_grid = l_grid[::-1]
    dl_grid = np.diff(l_grid)
    l_grid = l_grid[1:]

    img = np.zeros((Dx, Dy, len(l_grid)/2))
    img[:] = np.nan

    XSz = img.shape[0]/2
    YSz = img.shape[1]/2

    allspec = np.zeros((len(exts), len(l_grid)/2))
    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid) / dl_grid
        fi = fi[0:len(fi):2] + fi[1:len(fi):2]

        allspec[cnt, :] = fi

        x = (ext.X_as - minx)/0.25
        y = (ext.Y_as - miny)/0.25

        try: 
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x+dx, y+dy, :] = fi
        except:
            pass

        outstr = "\rX = %+10.5f, Y = %+10.5f" % (x, y)
        print outstr,
        sys.stdout.flush()

    back = np.median(allspec, 0)

    if 'fits' not in outname:
        outname += '.fits'

    ff = pf.PrimaryHDU(img.T)
    ff.writeto(outname)

    for cnt, ext in enumerate(exts):
        if ext.xrange is None:
            continue
        if ext.exptime is None:
            ext.exptime = 1
        if ext.lamcoeff is None:
            continue

        ix = np.arange(*ext.xrange)
        l = chebval(ix, ext.lamcoeff)
        s = ext.specw 

        f = interp1d(l, s, fill_value=np.nan, bounds_error=False)
        fi = f(l_grid)/dl_grid 
        fi = fi[0:len(fi):2] + fi[1:len(fi):2] - back

        try:
            x = np.round(Size*np.sqrt(3.) * (ext.Q_ix + ext.R_ix/2)) + XSz
            y = np.round(Size*3./2. * ext.R_ix) + YSz
        except:
            continue
        try: 
            for dx in [-1, 0, 1]:
                for dy in [-1, 0, 1]:
                    img[x+dx, y+dy, :] = fi
        except:
            pass

    ff = pf.PrimaryHDU(img.T)
    ff.writeto("bs_" + outname)