def spgl1_foopsi(fluor, bl, c1, g, sn, p, bas_nonneg, verbosity, thr = 1e-2,debug=False):
    """Solve the deconvolution problem using the SPGL1 library
     available from https://github.com/epnev/SPGL1_python_port
    """
    fluor=fluor.copy()
    if 'spg' not in globals():
        raise Exception('The SPGL package could not be loaded, use a different method')
    
    if bl is None:
        bas_flag = True
#        kde = KernelDensity(kernel='gaussian', bandwidth=100).fit(fluor[:,np.newaxis])
#        X_plot=np.linspace(np.min(fluor),np.max(fluor),len(fluor))[:,np.newaxis]
#        p_dens = np.exp(kde.score_samples(X_plot))
#        print 'esimating baseline...'
#        n,bn=np.histogram(fluor,range=(np.percentile(fluor,1),np.percentile(fluor,99)),bins=100)
#        bl =  bn[np.argmax(n)]
        bl = 0
    else:
        bas_flag = False
        
    if c1 is None:
        c1_flag = True
        c1 = 0
    else:
        c1_flag = False

    if bas_nonneg:
        b_lb = 0
    else:
        b_lb = np.min(fluor)
        
    T = len(fluor)
    w = np.ones(np.shape(fluor))
    if bas_flag:
        w = np.hstack((w,1e-10))
        
    if c1_flag:
        w = np.hstack((w,1e-10))
        
    gr = np.roots(np.concatenate([np.array([1]),-g.flatten()])) 
    gd_vec = np.max(gr)**np.arange(T)  # decay vector for initial fluorescence
    
    options = {'project' : spg.NormL1NN_project ,
               'primal_norm' : spg.NormL1NN_primal ,
               'dual_norm' : spg.NormL1NN_dual,
               'weights'   : w,
               'verbosity' : verbosity,
               'iterations': T}
    
    opA = lambda x,mode: G_inv_mat(x,mode,T,g,gd_vec,bas_flag,c1_flag)
    
    
    spikes,_,_,info = spg_bpdn(opA,np.squeeze(fluor)-bas_nonneg*b_lb - (1-bas_flag)*bl -(1-c1_flag)*c1*gd_vec, sn*np.sqrt(T))
    if np.min(spikes)<-thr*np.max(spikes) and not debug:
        spikes[:T][spikes[:T]<0]=0
        spikes,_,_,info = spg_bpdn(opA,np.squeeze(fluor)-bas_nonneg*b_lb - (1-bas_flag)*bl -(1-c1_flag)*c1*gd_vec, sn*np.sqrt(T), options)
        


    spikes[:T][spikes[:T]<0]=0
    
    c = opA(np.hstack((spikes[:T],0)),1)
    if bas_flag:
        bl = spikes[T] + b_lb
    
    if c1_flag:
        c1 = spikes[-1]
        
    return c,bl,c1,g,sn,spikes
예제 #2
0
def spgl1_foopsi(fluor, bl, c1, g, sn, p, bas_nonneg, verbosity, thr = 1e-2,debug=False):
    """Solve the deconvolution problem using the SPGL1 library
     available from https://github.com/epnev/SPGL1_python_port
    """
    fluor=fluor.copy()
    if 'spg' not in globals():
        raise Exception('The SPGL package could not be loaded, use a different method')
    
    if bl is None:
        bas_flag = True
        bl = 0
    else:
        bas_flag = False
        
    if c1 is None:
        c1_flag = True
        c1 = 0
    else:
        c1_flag = False

    if bas_nonneg:
        b_lb = 0
    else:
        b_lb = np.min(fluor)
        
    T = len(fluor)
    w = np.ones(np.shape(fluor))
    if bas_flag:
        w = np.hstack((w,1e-10))
        
    if c1_flag:
        w = np.hstack((w,1e-10))
        
    gr = np.roots(np.concatenate([np.array([1]),-g.flatten()])) 
    gd_vec = np.max(gr)**np.arange(T)  # decay vector for initial fluorescence
    
    options = {'project' : spg.NormL1NN_project ,
               'primal_norm' : spg.NormL1NN_primal ,
               'dual_norm' : spg.NormL1NN_dual,
               'weights'   : w,
               'verbosity' : verbosity,
               'iterations': T}
    
    opA = lambda x,mode: G_inv_mat(x,mode,T,g,gd_vec,bas_flag,c1_flag)
    

    spikes,_,_,info = spg_bpdn(opA,np.squeeze(fluor)-bas_nonneg*b_lb - (1-bas_flag)*bl -(1-c1_flag)*c1*gd_vec, sn*np.sqrt(T))
    if np.min(spikes)<-thr*np.max(spikes) and not debug:
        spikes[:T][spikes[:T]<0]=0
        spikes,_,_,info = spg_bpdn(opA,np.squeeze(fluor)-bas_nonneg*b_lb - (1-bas_flag)*bl -(1-c1_flag)*c1*gd_vec, sn*np.sqrt(T), options)
        
    #print [np.min(spikes[:T]),np.max(spikes[:T])]
    spikes[:T][spikes[:T]<0]=0    

    c = opA(np.hstack((spikes[:T],0)),1)
    if bas_flag:
        bl = spikes[T] + b_lb
    
    if c1_flag:
        c1 = spikes[-1]
        
    return c,bl,c1,g,sn,spikes