from Seller import Seller from FloorBoss import FloorBoss from Owner import Owner owner = Owner() boss = FloorBoss(owner) seller = Seller(boss) while True: quantity = int(input()) price = int(input()) print(seller.charge(quantity, price))
def find_income(self, surname): self.seller_income = Seller.seller_income_by_surname(surname.get()) return ", income: " + self.seller_income
def update_list(self, listbox): listbox.delete(0, END) self.seller_list = Seller.show_all_sellers().split('\n') for seller in self.seller_list: self.allseller_listbox.insert(END, seller) return
def update_percent(self, surname, percent): Seller.update_percent(surname, float(percent.get())) self.update_list(self.allseller_listbox)
def __init__(self, *args, **kwargs): Page.__init__(self, *args, **kwargs) window = Toplevel(self) window.title("Seller window") window.state('zoomed') all_sellers = Frame(window) all_sellers.pack(side=LEFT, fill=Y) Label(all_sellers, text="All avaliable sellers").pack() self.allseller_listbox = Listbox(all_sellers, width=80) self.allseller_listbox.bind('<Double-1>', self.all_list_on_click) self.seller_list = Seller.show_all_sellers().split("\n") self.seller_list.pop(-1) for seller in self.seller_list: self.allseller_listbox.insert(END, seller) self.allseller_listbox.pack(side="top", fill="both") all_docx = Button(all_sellers, text="Export info in docx about all sellers", command=self.form_docx_report()) all_docx.pack() all_exel = Button(all_sellers, text="Export info in exel about all sellers", command=self.form_exel_report()) all_exel.pack() search_seller = Frame(window) search_seller.pack(side=LEFT, fill=Y) Label(search_seller, text="Search seller by surname").pack() enter_name = Entry(search_seller) enter_name.pack() self.find_listbox = Listbox(search_seller, width=80) self.find_listbox.bind('<Double-1>', self.find_list_on_click) find_prod = partial(self.search_seller_on_click, self.find_listbox, enter_name) search_btn = Button(search_seller, text="Search", command=find_prod) search_btn.pack() self.find_listbox.pack() add_seller = Frame(window) add_seller.pack(side=LEFT, fill=Y) Label(add_seller, text="Add new seller").grid(row=0, column=0, columnspan=3) name_label = Label(add_seller, text="Enter sellers` name:") surname_label = Label(add_seller, text="Enter sellers` surname:") middle_name_label = Label(add_seller, text="Enter sellers middle name:") income_percent_label = Label(add_seller, text="Enter sellers` income price:") name_entry = Entry(add_seller) surname_entry = Entry(add_seller) middle_name_entry = Entry(add_seller) income_percent_entry = Entry(add_seller) add_sel = partial(self.add_seller, name_entry, surname_entry, middle_name_entry, income_percent_entry, self.allseller_listbox) add_btn = Button(add_seller, text="Add", command=add_sel) name_label.grid(row=1, column=0) surname_label.grid(row=2, column=0) middle_name_label.grid(row=3, column=0) income_percent_label.grid(row=4, column=0) name_entry.grid(row=1, column=1) surname_entry.grid(row=2, column=1) middle_name_entry.grid(row=3, column=1) income_percent_entry.grid(row=4, column=1) add_btn.grid(row=5, column=1)
from tensorflow.keras.datasets import cifar100, cifar10 import math from DModel import DModel from EA import EA_Buyer import random import Utils dataset = "CIFAR10" n_classes = 10 u = 1 (trainImages, trainLabels), features, (testX, testY) = Utils.load_CIFAR10() init_image_ids = np.loadtxt("./" + dataset + "/" + str(u) + "/init.csv") init_image_ids = [int(v) for v in init_image_ids] seller = Seller(n_classes, trainImages, trainLabels, init_image_ids) alloc_strat = 'Squareroot' for budget in [3000, 5000, 6000, 8000, 10000, 20000, 30000, 39000]: # for budget in [5000,10000,20000]: # for l in [0.01,0.03,0.05,0.07,0.09]: for l in [0.05001]: seller.reset() buyer = EA_Buyer(budget, n_classes, features, trainImages, trainLabels, init_image_ids, seller) buyer.l = l buyer.allocation_strategy = alloc_strat purchase_list = buyer.process() write_file = open( "./" + dataset + "/" + str(u) + "/EA-" + alloc_strat + "-" +
def load_dataset(): (trainX, trainY), (testX, testY) = Utils.read_Crop() features = trainX.copy() return (trainX, trainY), features, (testX, testY) (trainX, trainY), features, (testX, testY) = load_dataset() init_image_ids = np.loadtxt(folder + "init.csv") init_image_ids = [int(v) for v in init_image_ids] total_budget = 100001 budget_list = list(np.arange(2000, 100001, 5000)) seller = Seller(n_classes, trainX, trainY, init_image_ids) # purchase step for _ in range(10): seller.reset() model = CModel() buyer = RD_Buyer(total_budget, n_classes, features, trainX, trainY, init_image_ids, model, seller) buyer.batch_size = 100 purchase_list = buyer.process() for budget in budget_list: write_file = open(folder + "RD-" + str(budget), 'a') write_file.write(' '.join([str(v) for v in purchase_list[:budget]]) + "\n") write_file.flush() write_file.close()
import Utils from RModel import RModel import random import Utils u=1 n_regions = 16 (trainX, trainY), features, (testX, testY) = Utils.load_RoadNetd() folder = "./roadnet/roadnet" + str(n_regions) + "/" init_image_ids = np.loadtxt(folder + str(u) + "/init.csv") init_image_ids = [int(v) for v in init_image_ids] all_budgets = list(range(2000,300000,2000)) alloc_strat = 'Linear' seller = Seller(n_regions, trainX, trainY, init_image_ids, False) for l in [0.001]: # data acquisition for budget in all_budgets: write_file = open(folder + str(u) + "/EA-" + str(budget), 'w') for _ in range(10): seller.reset() buyer = EA_Buyer(budget, n_regions, features, trainX, trainY, init_image_ids, seller) buyer.chenge_to_regression() buyer.allocation_strategy = alloc_strat buyer.l = l purchase_list = buyer.process() write_file.write(' '.join([str(v) for v in purchase_list])) write_file.flush() write_file.close()