# NODES = sorted([236, 237, 186, 170, 141, 162, 140, 238, 142, 229, 239, 48, 161, 107, 263, 262, 234, 68, 100, 143]) # NODES = sorted([236, 237, 186, 170, 141]) NODES = sorted([236, 237, 186, 170, 141, 162, 140, 238, 142, 229]) initial_vehicle = args.init_veh iterations = args.iter vehicle_speed = args.veh_speed if file_conf is not None: NODES = sorted(file_conf.pop("nodes", NODES)) initial_vehicle = int(file_conf.pop("init_veh", initial_vehicle)) iterations = int(file_conf.pop("iter", iterations)) vehicle_speed = int(file_conf.pop("veh_speed", vehicle_speed)) update_graph_file(os.path.join(CONFIG, 'gps.csv'), os.path.join(CONFIG, 'aam.csv'), NODES) update_vehicle_initial_distribution(veh_dist=[initial_vehicle] * len(NODES), nodes=NODES, speed=vehicle_speed) ray.init() nodes_list = [str(x) for x in NODES] configure = ppo.DEFAULT_CONFIG.copy() # configure['vf_share_layers'] = False configure['env'] = TaxiRebalance configure['num_workers'] = args.num_cpu if args.num_cpu is not None else 1 configure['num_gpus'] = args.num_gpu if args.num_gpu is not None else 0 configure['vf_clip_param'] = args.vf_clip configure['lr'] = args.lr configure['train_batch_size'] = args.tr_bat_size configure['rollout_fragment_length'] = args.wkr_smpl_size configure['sgd_minibatch_size'] = args.sgd_bat_size configure['env_config'] = {
type=float, default=3e-3) parser.add_argument('--e_lr', nargs='?', metavar='<entropy learning rate>', type=float, default=3e-3) args = parser.parse_args() # NODES = sorted(pd.read_csv(os.path.join(CONFIG, 'aam.csv'), index_col=0, header=0).index.values.tolist()) # NODES = sorted([236, 237, 186, 170, 141, 162, 140, 238, 142, 229, 239, 48, 161, 107, 263, 262, 234, 68, 100, 143]) NODES = sorted([236, 237, 186, 170, 141]) update_graph_file(os.path.join(CONFIG, 'gps.csv'), os.path.join(CONFIG, 'aam.csv'), NODES) update_vehicle_initial_distribution( [int(args.init_veh) for i in range(len(NODES))], nodes=NODES) ray.init() with open(graph_file, 'r') as f: node_list = json.load(f) node_list = [x for x in node_list] configure = sac.DEFAULT_CONFIG.copy() configure['env'] = TaxiRebalance try: with open(args.config, 'r') as file: file_conf = json.load(file) except FileNotFoundError: configure['num_workers'] = args.num_cpu configure['num_gpus'] = args.num_gpu configure['timesteps_per_iteration'] = 300 # MDP steps per iteration