def test_Problem2D_N(self): problemDC = DC.Problem2D_N(self.mesh, sigmaMap=Maps.IdentityMap(self.mesh)) problemDC.Solver = Solver problemDC.pair(self.surveyDC) data0 = self.surveyDC.dpred(self.sigma0) datainf = self.surveyDC.dpred(self.sigmaInf) problemIP = IP.Problem2D_N( self.mesh, sigma=self.sigmaInf, etaMap=Maps.IdentityMap(self.mesh), ) problemIP.Solver = Solver surveyIP = IP.Survey(self.srcLists_ip) problemIP.pair(surveyIP) data_full = data0 - datainf data = surveyIP.dpred(self.eta) err = np.linalg.norm( (data - data_full) / data_full)**2 / data_full.size if err < 0.05: passed = True print(">> IP forward test for Problem2D_N is passed") print(err) else: passed = False print(">> IP forward test for Problem2D_N is failed") self.assertTrue(passed)
def setUp(self): cs = 12.5 hx = [(cs, 7, -1.3), (cs, 61), (cs, 7, 1.3)] hy = [(cs, 7, -1.3), (cs, 20)] mesh = Mesh.TensorMesh([hx, hy], x0="CN") # x = np.linspace(-200, 200., 20) x = np.linspace(-200, 200., 2) M = Utils.ndgrid(x - 12.5, np.r_[0.]) N = Utils.ndgrid(x + 12.5, np.r_[0.]) A0loc = np.r_[-150, 0.] A1loc = np.r_[-130, 0.] B0loc = np.r_[-130, 0.] B1loc = np.r_[-110, 0.] rx = DC.Rx.Dipole_ky(M, N) src0 = DC.Src.Dipole([rx], A0loc, B0loc) src1 = DC.Src.Dipole([rx], A1loc, B1loc) survey = IP.Survey([src0, src1]) sigma = np.ones(mesh.nC) * 1. problem = IP.Problem2D_N(mesh, rho=1. / sigma, etaMap=Maps.IdentityMap(mesh), verbose=False) problem.pair(survey) mSynth = np.ones(mesh.nC) * 0.1 survey.makeSyntheticData(mSynth) # Now set up the problem to do some minimization dmis = DataMisfit.l2_DataMisfit(survey) reg = Regularization.Tikhonov(mesh) opt = Optimization.InexactGaussNewton(maxIterLS=20, maxIter=10, tolF=1e-6, tolX=1e-6, tolG=1e-6, maxIterCG=6) invProb = InvProblem.BaseInvProblem(dmis, reg, opt, beta=1e4) inv = Inversion.BaseInversion(invProb) self.inv = inv self.reg = reg self.p = problem self.mesh = mesh self.m0 = mSynth self.survey = survey self.dmis = dmis