def MagneticDipoleVectorPotential(srcLoc, obsLoc, component, moment=1., orientation=np.r_[0., 0., 1.], mu=mu_0): """ Calculate the vector potential of a set of magnetic dipoles at given locations 'ref. <http://en.wikipedia.org/wiki/Dipole#Magnetic_vector_potential>' :param numpy.ndarray srcLoc: Location of the source(s) (x, y, z) :param numpy.ndarray,SimPEG.Mesh obsLoc: Where the potentials will be calculated (x, y, z) or a SimPEG Mesh :param str,list component: The component to calculate - 'x', 'y', or 'z' if an array, or grid type if mesh, can be a list :param numpy.ndarray orientation: The vector dipole moment :rtype: numpy.ndarray :return: The vector potential each dipole at each observation location """ # TODO: break this out! if isinstance(orientation, str): orientation = orientationDict[orientation] assert np.linalg.norm(np.array(orientation), 2) == 1., ("orientation must " "be a unit vector") if type(component) in [list, tuple]: out = range(len(component)) for i, comp in enumerate(component): out[i] = MagneticDipoleVectorPotential(srcLoc, obsLoc, comp, orientation=orientation, mu=mu) return np.concatenate(out) if isinstance(obsLoc, Mesh.BaseMesh): mesh = obsLoc assert component in ['Ex', 'Ey', 'Ez', 'Fx', 'Fy', 'Fz'], ("Components" "must be in: ['Ex','Ey','Ez','Fx','Fy','Fz']") return MagneticDipoleVectorPotential(srcLoc, getattr(mesh, 'grid' + component), component[1], orientation=orientation) if component == 'x': dimInd = 0 elif component == 'y': dimInd = 1 elif component == 'z': dimInd = 2 else: raise ValueError('Invalid component') srcLoc = np.atleast_2d(srcLoc) obsLoc = np.atleast_2d(obsLoc) orientation = np.atleast_2d(orientation) nObs = obsLoc.shape[0] nSrc = srcLoc.shape[0] m = moment*np.array(orientation).repeat(nObs, axis=0) A = np.empty((nObs, nSrc)) for i in range(nSrc): dR = obsLoc - srcLoc[i, np.newaxis].repeat(nObs, axis=0) mCr = np.cross(m, dR) r = np.sqrt((dR**2).sum(axis=1)) A[:, i] = +(mu/(4*np.pi)) * mCr[:, dimInd]/(r**3) if nSrc == 1: return A.flatten() return A
def MagneticDipoleFields(srcLoc, obsLoc, component, orientation='Z', moment=1., mu=mu_0): """ Calculate the vector potential of a set of magnetic dipoles at given locations 'ref. <http://en.wikipedia.org/wiki/Dipole#Magnetic_vector_potential>' .. math:: B = \frac{\mu_0}{4 \pi r^3} \left( \frac{3 \vec{r} (\vec{m} \cdot \vec{r})}{r^2}) - \vec{m} \right) \cdot{\hat{rx}} :param numpy.ndarray srcLoc: Location of the source(s) (x, y, z) :param numpy.ndarray obsLoc: Where the potentials will be calculated (x, y, z) :param str component: The component to calculate - 'x', 'y', or 'z' :param numpy.ndarray moment: The vector dipole moment (vertical) :rtype: numpy.ndarray :return: The vector potential each dipole at each observation location """ if isinstance(orientation, str): assert orientation.upper() in ['X', 'Y', 'Z'], ("orientation must be 'x', " "'y', or 'z' or a vector" "not {}".format(orientation) ) elif (not np.allclose(np.r_[1., 0., 0.], orientation) or not np.allclose(np.r_[0., 1., 0.], orientation) or not np.allclose(np.r_[0., 0., 1.], orientation)): warnings.warn('Arbitrary trasnmitter orientations ({}) not thouroughly tested ' 'Pull request on a test anyone? bueller?').format(orientation) if isinstance(component, str): assert component.upper() in ['X', 'Y', 'Z'], ("component must be 'x', " "'y', or 'z' or a vector" "not {}".format(component) ) elif (not np.allclose(np.r_[1., 0., 0.], component) or not np.allclose(np.r_[0., 1., 0.], component) or not np.allclose(np.r_[0., 0., 1.], component)): warnings.warn('Arbitrary receiver orientations ({}) not thouroughly tested ' 'Pull request on a test anyone? bueller?').format(component) if isinstance(orientation, str): orientation = orientationDict[orientation.upper()] if isinstance(component, str): component = orientationDict[component.upper()] assert np.linalg.norm(orientation, 2) == 1., ('orientation must be a unit ' 'vector. Use "moment=X to ' 'scale source fields') if np.linalg.norm(component, 2) != 1.: warnings.warn('The magnitude of the receiver component vector is > 1, ' ' it is {}. The receiver fields will be scaled.' ).format(np.linalg.norm(component, 2)) srcLoc = np.atleast_2d(srcLoc) component = np.atleast_2d(component) obsLoc = np.atleast_2d(obsLoc) orientation = np.atleast_2d(orientation) nObs = obsLoc.shape[0] nSrc = int(srcLoc.size / 3.) # use outer product to construct an array of [x_src, y_src, z_src] m = moment*orientation.repeat(nObs, axis=0) B = [] for i in range(nSrc): srcLoc = srcLoc[i, np.newaxis].repeat(nObs, axis=0) rx = component.repeat(nObs, axis=0) dR = obsLoc - srcLoc r = np.sqrt((dR**2).sum(axis=1)) # mult each element and sum along the axis (vector dot product) m_dot_dR_div_r2 = (m * dR).sum(axis=1) / (r**2) # multiply the scalar m_dot_dR by the 3D vector r rvec_m_dot_dR_div_r2 = np.vstack([m_dot_dR_div_r2 * dR[:, i] for i in range(3)]).T inside = (3. * rvec_m_dot_dR_div_r2) - m # dot product with rx orientation inside_dot_rx = (inside * rx).sum(axis=1) front = (mu/(4.* np.pi * r**3)) B.append(Utils.mkvc(front * inside_dot_rx)) return np.vstack(B).T
def MagneticLoopVectorPotential(srcLoc, obsLoc, component, radius, orientation='Z', mu=mu_0): """ Calculate the vector potential of horizontal circular loop at given locations :param numpy.ndarray srcLoc: Location of the source(s) (x, y, z) :param numpy.ndarray,SimPEG.Mesh obsLoc: Where the potentials will be calculated (x, y, z) or a SimPEG Mesh :param str,list component: The component to calculate - 'x', 'y', or 'z' if an array, or grid type if mesh, can be a list :param numpy.ndarray I: Input current of the loop :param numpy.ndarray radius: radius of the loop :rtype: numpy.ndarray :return: The vector potential each dipole at each observation location """ if isinstance(orientation, str): if orientation.upper() != 'Z': raise NotImplementedError, 'Only Z oriented loops implemented' elif not np.allclose(orientation, np.r_[0., 0., 1.]): raise NotImplementedError, 'Only Z oriented loops implemented' if type(component) in [list, tuple]: out = range(len(component)) for i, comp in enumerate(component): out[i] = MagneticLoopVectorPotential(srcLoc, obsLoc, comp, radius, orientation, mu) return np.concatenate(out) if isinstance(obsLoc, Mesh.BaseMesh): mesh = obsLoc assert component in ['Ex','Ey','Ez','Fx','Fy','Fz'], "Components must be in: ['Ex','Ey','Ez','Fx','Fy','Fz']" return MagneticLoopVectorPotential(srcLoc, getattr(mesh,'grid'+component), component[1], radius, mu) srcLoc = np.atleast_2d(srcLoc) obsLoc = np.atleast_2d(obsLoc) n = obsLoc.shape[0] nSrc = srcLoc.shape[0] if component=='z': A = np.zeros((n, nSrc)) if nSrc ==1: return A.flatten() return A else: A = np.zeros((n, nSrc)) for i in range (nSrc): x = obsLoc[:, 0] - srcLoc[i, 0] y = obsLoc[:, 1] - srcLoc[i, 1] z = obsLoc[:, 2] - srcLoc[i, 2] r = np.sqrt(x**2 + y**2) m = (4 * radius * r) / ((radius + r)**2 + z**2) m[m > 1.] = 1. # m might be slightly larger than 1 due to rounding errors # but ellipke requires 0 <= m <= 1 K = ellipk(m) E = ellipe(m) ind = (r > 0) & (m < 1) # % 1/r singular at r = 0 and K(m) singular at m = 1 Aphi = np.zeros(n) # % Common factor is (mu * I) / pi with I = 1 and mu = 4e-7 * pi. Aphi[ind] = ((mu / (np.pi * np.sqrt(m[ind])) * np.sqrt(radius / r[ind]) *((1. - m[ind] / 2.) * K[ind] - E[ind]))) if component == 'x': A[ind, i] = Aphi[ind] * (-y[ind] / r[ind] ) elif component == 'y': A[ind, i] = Aphi[ind] * ( x[ind] / r[ind] ) else: raise ValueError('Invalid component') if nSrc == 1: return A.flatten() return A
def MagneticDipoleVectorPotential(srcLoc, obsLoc, component, moment=1., orientation=np.r_[0., 0., 1.], mu=mu_0): """ Calculate the vector potential of a set of magnetic dipoles at given locations 'ref. <http://en.wikipedia.org/wiki/Dipole#Magnetic_vector_potential>' :param numpy.ndarray srcLoc: Location of the source(s) (x, y, z) :param numpy.ndarray,SimPEG.Mesh obsLoc: Where the potentials will be calculated (x, y, z) or a SimPEG Mesh :param str,list component: The component to calculate - 'x', 'y', or 'z' if an array, or grid type if mesh, can be a list :param numpy.ndarray orientation: The vector dipole moment :rtype: numpy.ndarray :return: The vector potential each dipole at each observation location """ # TODO: break this out! if isinstance(orientation, str): orientation = orientationDict[orientation] assert np.linalg.norm(np.array(orientation), 2) == 1., ("orientation must " "be a unit vector") if type(component) in [list, tuple]: out = list(range(len(component))) for i, comp in enumerate(component): out[i] = MagneticDipoleVectorPotential(srcLoc, obsLoc, comp, orientation=orientation, mu=mu) return np.concatenate(out) if isinstance(obsLoc, Mesh.BaseMesh): mesh = obsLoc assert component in ['Ex', 'Ey', 'Ez', 'Fx', 'Fy', 'Fz'], ("Components" "must be in: ['Ex','Ey','Ez','Fx','Fy','Fz']") return MagneticDipoleVectorPotential(srcLoc, getattr(mesh, 'grid' + component), component[1], orientation=orientation) if component == 'x': dimInd = 0 elif component == 'y': dimInd = 1 elif component == 'z': dimInd = 2 else: raise ValueError('Invalid component') srcLoc = np.atleast_2d(srcLoc) obsLoc = np.atleast_2d(obsLoc) orientation = np.atleast_2d(orientation) nObs = obsLoc.shape[0] nSrc = srcLoc.shape[0] m = moment*np.array(orientation).repeat(nObs, axis=0) A = np.empty((nObs, nSrc)) for i in range(nSrc): dR = obsLoc - srcLoc[i, np.newaxis].repeat(nObs, axis=0) mCr = np.cross(m, dR) r = np.sqrt((dR**2).sum(axis=1)) A[:, i] = +(mu/(4*np.pi)) * mCr[:, dimInd]/(r**3) if nSrc == 1: return A.flatten() return A
def MagneticLoopVectorPotential(srcLoc, obsLoc, component, radius, orientation='Z', mu=mu_0): """ Calculate the vector potential of horizontal circular loop at given locations :param numpy.ndarray srcLoc: Location of the source(s) (x, y, z) :param numpy.ndarray,SimPEG.Mesh obsLoc: Where the potentials will be calculated (x, y, z) or a SimPEG Mesh :param str,list component: The component to calculate - 'x', 'y', or 'z' if an array, or grid type if mesh, can be a list :param numpy.ndarray I: Input current of the loop :param numpy.ndarray radius: radius of the loop :rtype: numpy.ndarray :return: The vector potential each dipole at each observation location """ if isinstance(orientation, str): if orientation.upper() != 'Z': raise NotImplementedError('Only Z oriented loops implemented') elif not np.allclose(orientation, np.r_[0., 0., 1.]): raise NotImplementedError('Only Z oriented loops implemented') if type(component) in [list, tuple]: out = list(range(len(component))) for i, comp in enumerate(component): out[i] = MagneticLoopVectorPotential(srcLoc, obsLoc, comp, radius, orientation, mu) return np.concatenate(out) if isinstance(obsLoc, Mesh.BaseMesh): mesh = obsLoc assert component in ['Ex','Ey','Ez','Fx','Fy','Fz'], "Components must be in: ['Ex','Ey','Ez','Fx','Fy','Fz']" return MagneticLoopVectorPotential(srcLoc, getattr(mesh,'grid'+component), component[1], radius, mu) srcLoc = np.atleast_2d(srcLoc) obsLoc = np.atleast_2d(obsLoc) n = obsLoc.shape[0] nSrc = srcLoc.shape[0] if component=='z': A = np.zeros((n, nSrc)) if nSrc ==1: return A.flatten() return A else: A = np.zeros((n, nSrc)) for i in range (nSrc): x = obsLoc[:, 0] - srcLoc[i, 0] y = obsLoc[:, 1] - srcLoc[i, 1] z = obsLoc[:, 2] - srcLoc[i, 2] r = np.sqrt(x**2 + y**2) m = (4 * radius * r) / ((radius + r)**2 + z**2) m[m > 1.] = 1. # m might be slightly larger than 1 due to rounding errors # but ellipke requires 0 <= m <= 1 K = ellipk(m) E = ellipe(m) ind = (r > 0) & (m < 1) # % 1/r singular at r = 0 and K(m) singular at m = 1 Aphi = np.zeros(n) # % Common factor is (mu * I) / pi with I = 1 and mu = 4e-7 * pi. Aphi[ind] = ((mu / (np.pi * np.sqrt(m[ind])) * np.sqrt(radius / r[ind]) *((1. - m[ind] / 2.) * K[ind] - E[ind]))) if component == 'x': A[ind, i] = Aphi[ind] * (-y[ind] / r[ind] ) elif component == 'y': A[ind, i] = Aphi[ind] * ( x[ind] / r[ind] ) else: raise ValueError('Invalid component') if nSrc == 1: return A.flatten() return A