예제 #1
0
    # Get unique geo units
    geoUnits = np.unique(mgeo).tolist()

    # Compute an a median value for each homogeneous units
    mUnit = np.asarray([np.median(mgeo[mgeo == unit]) for unit in geoUnits])

    # Build list of indecies for the geounits
    index = []
    nCunit = []
    for unit in geoUnits:
        index += [mgeo == unit]
        nCunit += [int((mgeo == unit).sum())]
    nC = len(index)

    # Creat reduced identity map
    homogMap = Maps.SurjectUnits(index)

    # Create a wire map to link the homogeneous and heterogeneous spaces
    wires = Maps.Wires(('h**o', nC), ('hetero', int(actv.sum())))

    # Create Sum map for the global inverse
    sumMap = Maps.SumMap([homogMap*wires.h**o, wires.hetero])

    # LOOP THROUGH TILES
    surveyMask = np.ones(survey.nD, dtype='bool')  # Keep track of locs used
    wrGlobal = np.zeros(int(nC + actv.sum()))  # Global sensitivity weights
    if tileProblem:

        # Loop over different tile size and break
        # problem to fit in memory
        usedRAM = np.inf
예제 #2
0
def run(plotIt=True):

    H0 = (50000., 90., 0.)

    # Create a mesh
    dx = 5.

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC')

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1]

    # We would usually load a topofile
    topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)]

    # Go from topo to actv cells
    actv = Utils.surface2ind_topo(mesh, topo, 'N')
    actv = np.asarray([inds for inds, elem in enumerate(actv, 1) if elem],
                      dtype=int) - 1

    # Create active map to go from reduce space to full
    actvMap = Maps.InjectActiveCells(mesh, actv, -100)
    nC = len(actv)

    # Create and array of observation points
    xr = np.linspace(-20., 20., 20)
    yr = np.linspace(-20., 20., 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5.

    # Create a MAGsurvey
    rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)]
    rxLoc = PF.BaseMag.RxObs(rxLoc)
    srcField = PF.BaseMag.SrcField([rxLoc], param=H0)
    survey = PF.BaseMag.LinearSurvey(srcField)

    # We can now create a susceptibility model and generate data
    model = np.zeros(mesh.nC)

    # Change values in half the domain
    model[mesh.gridCC[:, 0] < 0] = 0.01

    # Add a block in half-space
    model = Utils.ModelBuilder.addBlock(mesh.gridCC, model,
                                        np.r_[-10, -10, 20], np.r_[10, 10,
                                                                   40], 0.05)

    model = Utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = Maps.InjectActiveCells(mesh, actv, np.nan)

    # Creat reduced identity map
    idenMap = Maps.IdentityMap(nP=nC)

    # Create the forward model operator
    prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=idenMap, actInd=actv)

    # Pair the survey and problem
    survey.pair(prob)

    # Compute linear forward operator and compute some data
    d = prob.fields(model)

    # Add noise and uncertainties
    # We add some random Gaussian noise (1nT)
    data = d + np.random.randn(len(d))
    wd = np.ones(len(data)) * 1.  # Assign flat uncertainties

    survey.dobs = data
    survey.std = wd
    survey.mtrue = model

    # Plot the data
    rxLoc = survey.srcField.rxList[0].locs

    # Creat a homogenous maps for the two domains
    domains = [mesh.gridCC[actv, 0] < 0, mesh.gridCC[actv, 0] >= 0]
    homogMap = Maps.SurjectUnits(domains)

    # Create a wire map for a second model space, voxel based
    wires = Maps.Wires(('h**o', len(domains)), ('hetero', len(actv)))

    # Create Sum map
    sumMap = Maps.SumMap([homogMap * wires.h**o, wires.hetero])

    # Create the forward model operator
    prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=sumMap, actInd=actv)

    # Pair the survey and problem
    survey.unpair()
    survey.pair(prob)

    # Make depth weighting
    wr = np.zeros(sumMap.shape[1])

    # Take the cell number out of the scaling.
    # Want to keep high sens for large volumnes
    scale = Utils.sdiag(np.r_[Utils.mkvc(1. / homogMap.P.sum(axis=0)),
                              np.ones_like(actv)])

    for ii in range(survey.nD):
        wr += ((prob.G[ii, :] *
                prob.chiMap.deriv(np.ones(sumMap.shape[1]) * 1e-4) * scale) /
               survey.std[ii])**2.

    # Scale the model spaces independently
    wr[wires.h**o.index] /= (np.max((wires.h**o * wr)))
    wr[wires.hetero.index] /= (np.max(wires.hetero * wr))
    wr = wr**0.5

    ## Create a regularization
    # For the homogeneous model
    regMesh = Mesh.TensorMesh([len(domains)])

    reg_m1 = Regularization.Sparse(regMesh, mapping=wires.h**o)
    reg_m1.cell_weights = wires.h**o * wr
    reg_m1.norms = np.c_[0, 2, 2, 2]
    reg_m1.mref = np.zeros(sumMap.shape[1])

    # Regularization for the voxel model
    reg_m2 = Regularization.Sparse(mesh, indActive=actv, mapping=wires.hetero)
    reg_m2.cell_weights = wires.hetero * wr
    reg_m2.norms = np.c_[0, 1, 1, 1]
    reg_m2.mref = np.zeros(sumMap.shape[1])

    reg = reg_m1 + reg_m2

    # Data misfit function
    dmis = DataMisfit.l2_DataMisfit(survey)
    dmis.W = 1 / wd

    # Add directives to the inversion
    opt = Optimization.ProjectedGNCG(maxIter=100,
                                     lower=0.,
                                     upper=1.,
                                     maxIterLS=20,
                                     maxIterCG=10,
                                     tolCG=1e-3,
                                     tolG=1e-3,
                                     eps=1e-6)
    invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
    betaest = Directives.BetaEstimate_ByEig()

    # Here is where the norms are applied
    # Use pick a treshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = Directives.Update_IRLS(f_min_change=1e-3, minGNiter=1)
    update_Jacobi = Directives.UpdatePreconditioner()
    inv = Inversion.BaseInversion(invProb,
                                  directiveList=[IRLS, betaest, update_Jacobi])

    # Run the inversion
    m0 = np.ones(sumMap.shape[1]) * 1e-4  # Starting model
    prob.model = m0
    mrecSum = inv.run(m0)
    if plotIt:

        mesh.plot_3d_slicer(actvMap * model,
                            aspect="equal",
                            zslice=30,
                            pcolorOpts={"cmap": 'inferno_r'},
                            transparent='slider')

        mesh.plot_3d_slicer(actvMap * sumMap * mrecSum,
                            aspect="equal",
                            zslice=30,
                            pcolorOpts={"cmap": 'inferno_r'},
                            transparent='slider')