def __init__(self): #logging.info('Beginning initialization of distributed, streaming anomaly detection server') begin_time = time.time() # rrcf classifier parameters # TODO: tune forest parameters self.TREE_SIZE = 50 self.NUM_TREES = 100 training_data_dir = 'training_data' # Simon model parameters self.maxlen = 200 self.max_cells = 100 checkpoint_dir = 'deployed_checkpoints/' # instantiate Simon feature model config = Simon({}).load_config(MODEL_OBJECT,checkpoint_dir) self.encoder = config['encoder'] Classifier = Simon(encoder=self.encoder) self.model = Classifier.generate_feature_model(self.maxlen, self.max_cells, len(self.encoder.categories), checkpoint_dir, config) self.model._make_predict_function() # dictionary to store separate models by account self.classifiers = {}
def traverse_files_simon(datapath): logging.debug( f'Parsing historical emails as text from raw json files...\n') accounts_to_emails = {} accounts_to_times = {} maxlen = 200 max_cells = 100 for path, _, files in os.walk(datapath): for file in files: if re.match(".*.jsonl$", file): fullpath = os.path.join(path, file) df, accounts_to_times = parse_emails_simon(accounts_to_times, datapath=fullpath) raw_data = np.asarray(df.ix[:max_cells - 1, :]) raw_data = np.char.lower(np.transpose(raw_data).astype('U')) # produce simon feature vector print(f'producing Simon feature vectors for {fullpath}') checkpoint_dir = "../../NK-email-classifier/deployed_checkpoints/" config = Simon({}).load_config('text-class.10-0.42.pkl', checkpoint_dir) X = np.ones((raw_data.shape[0], max_cells, maxlen), dtype=np.int64) * -1 encoder = config['encoder'] Classifier = Simon(encoder=encoder) model = Classifier.generate_feature_model( maxlen, max_cells, len(encoder.categories), checkpoint_dir, config) accounts_to_emails[file] = model.predict(X) return accounts_to_emails, accounts_to_times
def main(datapath, email_index, execution_config, DEBUG): # set important parameters maxlen = 20 max_cells = 500 checkpoint_dir = "pretrained_models/" with open(checkpoint_dir + 'Categories_base.txt', 'r') as f: Categories = f.read().splitlines() category_count = len(Categories) # load specified execution configuration if execution_config is None: raise TypeError Classifier = Simon(encoder={}) # dummy text classifier config = Classifier.load_config(execution_config, checkpoint_dir) encoder = config['encoder'] intermediate_model = Classifier.generate_feature_model(maxlen, max_cells, category_count, checkpoint_dir, config, DEBUG=DEBUG) # load sample email with open(datapath) as data_file: emails = data_file.readlines() sample_email = json.loads(emails[int(email_index)])['body'] if DEBUG: print('DEBUG::sample email:') print(sample_email) tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') sample_email_sentence = tokenizer.tokenize(sample_email) sample_email_sentence = [elem[-maxlen:] for elem in sample_email_sentence] # truncate all_email_df = pd.DataFrame(sample_email_sentence, columns=['Email 0']) if DEBUG: print('DEBUG::the final shape is:') print(all_email_df.shape) all_email_df = all_email_df.astype(str) raw_data = np.asarray(all_email_df.ix[:max_cells - 1, :]) #truncate to max_cells raw_data = np.char.lower(np.transpose(raw_data).astype('U')) # encode data X = encoder.x_encode(raw_data, maxlen) # generate features for email y = intermediate_model.predict(X) # discard empty column edge case y[np.all(all_email_df.isnull(), axis=0)] = 0 # print and return result print('\n128-d Simon Feature Vector:\n') print(y[0]) return y[0]
def __init__(self): logging.info('Beginning initialization of distributed, streaming anomaly detection server') begin_time = time.time() # rrcf classifier parameters # TODO: tune forest parameters self.TREE_SIZE = 50 self.NUM_TREES = 100 training_data_dir = 'training_data' # Simon model parameters self.maxlen = 200 self.max_cells = 100 checkpoint_dir = 'deployed_checkpoints/' # instantiate Simon feature model config = Simon({}).load_config(MODEL_OBJECT,checkpoint_dir) self.encoder = config['encoder'] Classifier = Simon(encoder=self.encoder) self.model = Classifier.generate_feature_model(self.maxlen, self.max_cells, len(self.encoder.categories), checkpoint_dir, config) # check if training data exists if len(os.listdir('training_data')) == 0: return # training data folder contains pickled dictionary linking account id to training data else: # initialize separate rrcf classifier object for each sequence in configuration file #self.classifiers = traverse_training_data(training_data_dir, self.model, self.encoder, # maxlen=self.maxlen, max_cells=self.max_cells, checkpoint_dir=checkpoint_dir) # pickle parsed emails for testing #pickle.dump( self.classifiers, open( "classifiers.pkl", "wb" ) ) # #load parsed emails self.classifiers = pickle.load( open( "classifiers.pkl", "rb" ) ) for account, train in self.classifiers.items(): # generate higher d time features for training sets # only include weekly time information if span of training set is longer weekly_bool = check_timestamp_range(train[0]) time_feature_list = np.array([parse_time_features(t, weekly_bool) for t in train[0]]) repeated_time_feature_list = np.repeat(time_feature_list, int(len(train[1][0]) / time_feature_list.shape[1]), axis=1) # concatenate with text features features = np.concatenate((repeated_time_feature_list, train[1]), axis = 1) # train separate rrcf classifier given training data in each sequence start_time = time.time() tree_size = self.TREE_SIZE if features.shape[0] >= self.TREE_SIZE else features.shape[0] self.classifiers[account] = [robust_rcf(self.NUM_TREES, tree_size), weekly_bool] self.classifiers[account][0].fit_batch(features) logging.info(f"Time to train account {account} classifier: {time.time()-start_time}") # record max anomaly score from training set -> generate threshold for prediction ## TODO: tune anomaly threshold threshold = ANOMALY_THRESHOLD * self.classifiers[account][0].batch_anomaly_scores().values.max() self.classifiers[account].append(threshold) self.model._make_predict_function() logging.info(f'Completed initialization of distributed, streaming anomaly detection server. Total time = {(time.time() - begin_time) / 60} mins')