def getMolecules(self, group="all"): """Return a list containing all of the molecules in the specified group. Parameters ---------- group : str The name of the molecule group. Returns ------- molecules : [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`] The list of molecules in the group. """ if type(group) is not str: raise TypeError("'group' must be of type 'str'") # Try to extract the molecule group. try: molgrp = self._sire_object.group(_SireMol.MGName(group)) except: raise ValueError("No molecules in group '%s'" % group) # Return a molecules container. return _Molecules(molgrp.molecules())
def removeWaterMolecules(self): """Remove all of the water molecules from the system.""" # Get the list of water molecules. waters = self.getWaterMolecules() # Remove the molecules in the system. self._sire_object.remove(waters._sire_object, _SireMol.MGName("all")) # Reset the index mappings. self._reset_mappings() # Update the molecule numbers. self._mol_nums = self._sire_object.molNums()
def removeMolecules(self, molecules): """Remove a molecule, or list of molecules from the system. Parameters ---------- molecules : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>`, \ :class:`Molecules <BioSimSpace._SireWrappers.Molecules>`, \ [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`] A Molecule, Molecules object, or list of Molecule objects. """ # Whether the molecules are in a Sire container. is_sire_container = False # Convert tuple to a list. if type(molecules) is tuple: molecules = list(molecules) # A Molecule object. if type(molecules) is _Molecule: molecules = [molecules] # A Molecules object. if type(molecules) is _Molecules: is_sire_container = True # A list of Molecule objects. elif type(molecules) is list and all(isinstance(x, _Molecule) for x in molecules): pass # Invalid argument. else: raise TypeError("'molecules' must be of type 'BioSimSpace._SireWrappers.Molecule' " "or a list of 'BioSimSpace._SireWrappers.Molecule' types.") # Remove the molecules in the system. if is_sire_container: self._sire_object.remove(molecules._sire_object, _SireMol.MGName("all")) else: for mol in molecules: self._sire_object.remove(mol._sire_object.number()) # Reset the index mappings. self._reset_mappings() # Update the molecule numbers. self._mol_nums = self._sire_object.molNums()
def updateMolecules(self, molecules): """Update a molecule, or list of molecules in the system. Parameters ---------- molecules : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>`, \ [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`] A Molecule, or list of Molecule objects. """ # Convert tuple to a list. if type(molecules) is tuple: molecules = list(molecules) # A Molecule object. if type(molecules) is _Molecule: molecules = [molecules] # A list of Molecule objects. elif type(molecules) is list and all(isinstance(x, _Molecule) for x in molecules): pass # Invalid argument. else: raise TypeError("'molecules' must be of type 'BioSimSpace._SireWrappers.Molecule' " "or a list of 'BioSimSpace._SireWrappers.Molecule' types.") # Update each of the molecules. # TODO: Currently the Sire.System.update method doesn't work correctly # for certain changes to the Molecule molInfo object. As such, we remove # the old molecule from the system, then add the new one in. for mol in molecules: try: self._sire_object.update(mol._sire_object) except: self._sire_object.remove(mol._sire_object.number()) self._sire_object.add(mol._sire_object, _SireMol.MGName("all")) # Reset the index mappings. self._reset_mappings() # Update the molecule numbers. self._mol_nums = self._sire_object.molNums()
def getMolecules(self, group="all"): """Return a list containing all of the molecules in the specified group. Parameters ---------- group : str The name of the molecule group. Returns ------- molecules : [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`] The list of molecules in the group. """ if type(group) is not str: raise TypeError("'group' must be of type 'str'") # Try to extract the molecule group. try: molgrp = self._sire_system.group(_SireMol.MGName(group)) except: raise ValueError("No molecules in group '%s'" % group) # Create a list to store the molecules. mols = [] # Get a list of the MolNums in the group and sort them. nums = molgrp.molNums() # Loop over all of the molecules in the group and append to the list. for num in nums: mols.append(_Molecule(molgrp.molecule(num))) # This is a merged molecule. if mols[-1]._sire_molecule.hasProperty("is_perturbable"): mols[-1]._is_merged = True return mols
def addMolecules(self, molecules): """Add a molecule, or list of molecules to the system. Parameters ---------- molecules : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>`, \ [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`] A Molecule, or list of Molecule objects. """ # Convert tuple to a list. if type(molecules) is tuple: molecules = list(molecules) # A Molecule object. if type(molecules) is _Molecule: molecules = [molecules] # A list of Molecule objects. elif type(molecules) is list and all(isinstance(x, _Molecule) for x in molecules): pass # Invalid argument. else: raise TypeError("'molecules' must be of type 'BioSimSpace._SireWrappers.Molecule' " "or a list of 'BioSimSpace._SireWrappers.Molecule' types.") # The system is empty: create a new Sire system from the molecules. if self._sire_system.nMolecules() == 0: self._sire_system = self._createSireSystem(molecules) # Otherwise, add the molecules to the existing "all" group. else: for mol in molecules: self._sire_system.add(mol._sire_molecule, _SireMol.MGName("all"))
def addMolecules(self, molecules): """Add a molecule, or list of molecules to the system. Parameters ---------- molecules : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>`, \ :class:`Molecules <BioSimSpace._SireWrappers.Molecules>`, \ [:class:`Molecule <BioSimSpace._SireWrappers.Molecule>`], \ :class:`System <BioSimSpace._SireWrappers.System>` A Molecule, Molecules object, a list of Molecule objects, or a System containing molecules. """ # Whether the molecules are in a Sire container. is_sire_container = False # Convert tuple to a list. if type(molecules) is tuple: molecules = list(molecules) # A Molecule object. if type(molecules) is _Molecule: molecules = [molecules] # A Molecules object. if type(molecules) is _Molecules: is_sire_container = True # A System object. elif type(molecules) is System: is_sire_container = True # A list of Molecule objects. elif type(molecules) is list and all(isinstance(x, _Molecule) for x in molecules): pass # Invalid argument. else: raise TypeError("'molecules' must be of type 'BioSimSpace._SireWrappers.Molecule', " ", 'BioSimSpace._SireWrappers.System', or a list of " "'BioSimSpace._SireWrappers.Molecule' types.") # The system is empty: create a new Sire system from the molecules. if self._sire_object.nMolecules() == 0: self._sire_object = self._createSireSystem(molecules) # Otherwise, add the molecules to the existing "all" group. else: if is_sire_container: if type(molecules) is _Molecules: molecules = molecules._sire_object else: try: molecules = molecules._sire_object.at(_SireMol.MGNum(1)) except: molecules = molecules._sire_object.molecules() self._sire_object.add(molecules, _SireMol.MGName("all")) else: for mol in molecules: self._sire_object.add(mol._sire_object, _SireMol.MGName("all")) # Reset the index mappings. self._reset_mappings() # Update the molecule numbers. self._mol_nums = self._sire_object.molNums()
def _initialise_runner(self, system0, system1): """Internral helper function to initialise the process runner. Parameters ---------- system0 : :class:`System <BioSimSpace._SireWrappers.System>` The system for the first free energy leg. system1 : :class:`System <BioSimSpace._SireWrappers.System>` The system for the second free energy leg. """ if type(system0) is not _System: raise TypeError( "'system0' must be of type 'BioSimSpace._SireWrappers.System'") if type(system1) is not _System: raise TypeError( "'system1' must be of type 'BioSimSpace._SireWrappers.System'") # Initialise lists to store the processes for each leg. leg0 = [] leg1 = [] # Get the simulation type. sim_type = self.__class__.__name__ # Store the working directories for the legs. if sim_type == "Solvation": self._dir0 = "%s/free" % self._work_dir self._dir1 = "%s/vacuum" % self._work_dir elif sim_type == "Binding": self._dir0 = "%s/bound" % self._work_dir self._dir1 = "%s/free" % self._work_dir else: raise TypeError("Unsupported FreeEnergy simulation: '%s'" % sim_type) # Try to get the water model property of the system. try: water_model = system0._sire_system.property( "water_model").toString() # Default to TIP3P. except: water_model = "tip3p" if self._engine == "SOMD": # Reformat all of the water molecules so that they match the expected # AMBER topology template. (Required by SOMD.) waters0 = _SireIO.setAmberWater( system0._sire_system.search("water"), water_model) waters1 = _SireIO.setAmberWater( system1._sire_system.search("water"), water_model) # Loop over all of the renamed water molecules, delete the old one # from the system, then add the renamed one back in. # TODO: This is a hack since the "update" method of Sire.System # doesn't work properly at present. system0.removeWaterMolecules() system1.removeWaterMolecules() for wat in waters0: system0._sire_system.add(wat, _SireMol.MGName("all")) for wat in waters1: system1._sire_system.add(wat, _SireMol.MGName("all")) # Get the lambda values from the protocol. lam_vals = self._protocol.getLambdaValues() # Loop over all of the lambda values. for lam in lam_vals: # Update the protocol lambda values. self._protocol.setLambdaValues(lam=lam, lam_vals=lam_vals) # Create and append the required processes for each leg. # Nest the working directories inside self._work_dir. # SOMD. if self._engine == "SOMD": # TODO: This is currently hard-coded to use SOMD with the CUDA platform. leg0.append( _Process.Somd(system0, self._protocol, platform="CUDA", work_dir="%s/lambda_%5.4f" % (self._dir0, lam))) leg1.append( _Process.Somd(system1, self._protocol, platform="CUDA", work_dir="%s/lambda_%5.4f" % (self._dir1, lam))) # GROMACS. elif self._engine == "GROMACS": # TODO: This is currently hard-coded to use SOMD with the CUDA platform. leg0.append( _Process.Gromacs(system0, self._protocol, work_dir="%s/lambda_%5.4f" % (self._dir0, lam))) leg1.append( _Process.Gromacs(system1, self._protocol, work_dir="%s/lambda_%5.4f" % (self._dir1, lam))) # Initialise the process runner. All processes have already been nested # inside the working directory so no need to re-nest. self._runner = _Process.ProcessRunner(leg0 + leg1, work_dir=self._work_dir, nest_dirs=False)
def _solvate(molecule, box, shell, model, num_point, ion_conc, is_neutral, work_dir=None, property_map={}): """Internal function to add solvent using 'gmx solvate'. Parameters ---------- molecule : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>`, \ :class:`System <BioSimSpace._SireWrappers.System>` A molecule, or system of molecules. box : [:class:`Length <BioSimSpace.Types.Length>`] A list containing the box size in each dimension (in nm). shell : :class:`Length` <BioSimSpace.Types.Length>` Thickness of the water shell around the solute. model : str The name of the water model. num_point : int The number of atoms in the water model. ion_conc : float The ion concentration in (mol per litre). is_neutral : bool Whether to neutralise the system. work_dir : str The working directory for the process. property_map : dict A dictionary that maps system "properties" to their user defined values. This allows the user to refer to properties with their own naming scheme, e.g. { "charge" : "my-charge" } Returns ------- system : :class:`System <BioSimSpace._SireWrappers.System>` The solvated system. """ if molecule is not None: # Store the centre of the molecule. center = molecule._getAABox(property_map).center() # Work out the vector from the centre of the molecule to the centre of the # water box, converting the distance in each direction to Angstroms. vec = [] for x, y in zip(box, center): vec.append(0.5 * x.angstroms().magnitude() - y) # Translate the molecule. This allows us to create a water box # around the molecule. molecule.translate(vec, property_map) if type(molecule) is _System: # Reformat all of the water molecules so that they match the # expected GROMACS topology template. waters = _SireIO.setGromacsWater( molecule._sire_system.search("water"), model) # Loop over all of the renamed water molecules, delete the old one # from the system, then add the renamed one back in. # TODO: This is a hack since the "update" method of Sire.System # doesn't work properly at present. molecule.removeWaterMolecules() for wat in waters: molecule._sire_system.add(wat, _SireMol.MGName("all")) # Create a temporary working directory and store the directory name. if work_dir is None: tmp_dir = _tempfile.TemporaryDirectory() work_dir = tmp_dir.name # Run the solvation in the working directory. with _Utils.cd(work_dir): # Create the gmx command. if num_point == 3: mod = "spc216" else: mod = model command = "%s solvate -cs %s" % (_gmx_exe, mod) if molecule is not None: # Write the molecule/system to a GRO files. _IO.saveMolecules("input", molecule, "gro87") _os.rename("input.gro87", "input.gro") # Update the command. command += " -cp input.gro" # Add the box information. if box is not None: command += " -box %f %f %f" % (box[0].nanometers().magnitude(), box[1].nanometers().magnitude(), box[2].nanometers().magnitude()) # Add the shell information. if shell is not None: command += " -shell %f" % shell.nanometers().magnitude() # Just add box information. else: command += " -box %f %f %f" % (box[0].nanometers().magnitude(), box[1].nanometers().magnitude(), box[2].nanometers().magnitude()) # Add the output file. command += " -o output.gro" with open("README.txt", "w") as file: # Write the command to file. file.write("# gmx solvate was run with the following command:\n") file.write("%s\n" % command) # Create files for stdout/stderr. stdout = open("solvate.out", "w") stderr = open("solvate.err", "w") # Run gmx solvate as a subprocess. proc = _subprocess.run(command, shell=True, stdout=stdout, stderr=stderr) stdout.close() stderr.close() # gmx doesn't return sensible error codes, so we need to check that # the expected output was generated. if not _os.path.isfile("output.gro"): raise RuntimeError("'gmx solvate failed to generate output!") # Extract the water lines from the GRO file. water_lines = [] with open("output.gro", "r") as file: for line in file: if _re.search("SOL", line): # Store the SOL atom record. water_lines.append(line) # Add any box information. This is the last line in the GRO file. water_lines.append(line) # Write a GRO file that contains only the water atoms. if len(water_lines) - 1 > 0: with open("water.gro", "w") as file: file.write("BioSimSpace %s water box\n" % model.upper()) file.write("%d\n" % (len(water_lines) - 1)) for line in water_lines: file.write("%s" % line) else: raise ValueError( "No water molecules were generated. Try increasing " "the 'box' size or 'shell' thickness.") # Create a TOP file for the water model. By default we use the Amber03 # force field to generate a dummy topology for the water model. with open("water_ions.top", "w") as file: file.write("#define FLEXIBLE 1\n\n") file.write("; Include AmberO3 force field\n") file.write('#include "amber03.ff/forcefield.itp"\n\n') file.write("; Include %s water topology\n" % model.upper()) file.write('#include "amber03.ff/%s.itp"\n\n' % model) file.write("; Include ions\n") file.write('#include "amber03.ff/ions.itp"\n\n') file.write("[ system ] \n") file.write("BioSimSpace %s water box\n\n" % model.upper()) file.write("[ molecules ] \n") file.write(";molecule name nr.\n") file.write("SOL %d\n" % ((len(water_lines) - 1) / num_point)) # Load the water box. water = _IO.readMolecules(["water.gro", "water_ions.top"]) # Create a new system by adding the water to the original molecule. if molecule is not None: # Translate the molecule and water back to the original position. vec = [-x for x in vec] molecule.translate(vec, property_map) water.translate(vec) if type(molecule) is _System: # Extract the non-water molecules from the original system. non_waters = [ mol for mol in molecule.getMolecules() if not mol.isWater() ] # Create a system by adding these to the water molecules from # gmx solvate, which will include the original waters. system = _System(non_waters + water.getMolecules()) else: system = molecule + water.getMolecules() # Add all of the water box properties to the new system. for prop in water._sire_system.propertyKeys(): prop = property_map.get(prop, prop) # Add the space property from the water system. system._sire_system.setProperty( prop, water._sire_system.property(prop)) else: system = water # Now we add ions to the system and neutralise the charge. if ion_conc > 0 or is_neutral: # Write the molecule + water system to file. _IO.saveMolecules("solvated", system, "gro87") _IO.saveMolecules("solvated", system, "grotop") _os.rename("solvated.gro87", "solvated.gro") _os.rename("solvated.grotop", "solvated.top") # First write an mdp file. with open("ions.mdp", "w") as file: file.write("; Neighbour searching\n") file.write("cutoff-scheme = Verlet\n") file.write("rlist = 1.1\n") file.write("pbc = xyz\n") file.write("verlet-buffer-tolerance = -1\n") file.write("\n; Electrostatics\n") file.write("coulombtype = cut-off\n") file.write("\n; VdW\n") file.write("rvdw = 1.0\n") # Create the grompp command. command = "%s grompp -f ions.mdp -po ions.out.mdp -c solvated.gro -p solvated.top -o ions.tpr" % _gmx_exe with open("README.txt", "a") as file: # Write the command to file. file.write( "\n# gmx grompp was run with the following command:\n") file.write("%s\n" % command) # Create files for stdout/stderr. stdout = open("grommp.out", "w") stderr = open("grommp.err", "w") # Run grompp as a subprocess. proc = _subprocess.run(command, shell=True, stdout=stdout, stderr=stderr) stdout.close() stderr.close() # Flag whether to break out of the ion adding stage. is_break = False # Check for the tpr output file. if not _os.path.isfile("ions.tpr"): if shell is None: raise RuntimeError( "'gmx grommp' failed to generate output! " "Perhaps your box is too small?") else: is_break = True _warnings.warn( "Unable to achieve target ion concentration, try using " "'box' option instead of 'shell'.") # Only continue if grommp was successful. This allows us to skip the remainder # of the code if the ion addition failed when the 'shell' option was chosen, i.e. # because the estimated simulation box was too small. if not is_break: is_break = False # The ion concentration is unset. if ion_conc == 0: # Get the current molecular charge. charge = system.charge() # Round to the nearest integer value. charge = round(charge.magnitude()) # Create the genion command. command = "echo SOL | %s genion -s ions.tpr -o solvated_ions.gro -p solvated.top -neutral" % _gmx_exe # Add enough counter ions to neutralise the charge. if charge > 0: command += " -nn %d" % abs(charge) else: command += " -np %d" % abs(charge) else: # Create the genion command. command = "echo SOL | %s genion -s ions.tpr -o solvated_ions.gro -p solvated.top -%s -conc %f" \ % (_gmx_exe, "neutral" if is_neutral else "noneutral", ion_conc) with open("README.txt", "a") as file: # Write the command to file. file.write( "\n# gmx genion was run with the following command:\n") file.write("%s\n" % command) # Create files for stdout/stderr. stdout = open("genion.out", "w") stderr = open("genion.err", "w") # Run genion as a subprocess. proc = _subprocess.run(command, shell=True, stdout=stdout, stderr=stderr) stdout.close() stderr.close() # Check for the output GRO file. if not _os.path.isfile("solvated_ions.gro"): if shell is None: raise RuntimeError( "'gmx genion' failed to add ions! Perhaps your box is too small?" ) else: is_break = True _warnings.warn( "Unable to achieve target ion concentration, try using " "'box' option instead of 'shell'.") if not is_break: # Counters for the number of SOL, NA, and CL atoms. num_sol = 0 num_na = 0 num_cl = 0 # We now need to loop through the GRO file to extract the lines # corresponding to water or ion atoms. water_ion_lines = [] with open("solvated_ions.gro", "r") as file: for line in file: # This is a Sodium atom. if _re.search("NA", line): water_ion_lines.append(line) num_na += 1 # This is a Chlorine atom. if _re.search("CL", line): water_ion_lines.append(line) num_cl += 1 # This is a water atom. elif _re.search("SOL", line): water_ion_lines.append(line) num_sol += 1 # Add any box information. This is the last line in the GRO file. water_ion_lines.append(line) # Write a GRO file that contains only the water and ion atoms. if len(water_ion_lines) - 1 > 0: with open("water_ions.gro", "w") as file: file.write("BioSimSpace %s water box\n" % model.upper()) file.write("%d\n" % (len(water_ion_lines) - 1)) for line in water_ion_lines: file.write("%s" % line) # Ions have been added. Update the TOP file fo the water model # with the new atom counts. if num_na > 0 or num_cl > 0: with open("water_ions.top", "w") as file: file.write("#define FLEXIBLE 1\n\n") file.write("; Include AmberO3 force field\n") file.write( '#include "amber03.ff/forcefield.itp"\n\n') file.write("; Include %s water topology\n" % model.upper()) file.write('#include "amber03.ff/%s.itp"\n\n' % model) file.write("; Include ions\n") file.write('#include "amber03.ff/ions.itp"\n\n') file.write("[ system ] \n") file.write("BioSimSpace %s water box\n\n" % model.upper()) file.write("[ molecules ] \n") file.write(";molecule name nr.\n") file.write("SOL %d\n" % (num_sol / num_point)) if num_na > 0: file.write("NA %d\n" % num_na) if num_cl > 0: file.write("CL %d\n" % num_cl) # Load the water/ion box. water_ions = _IO.readMolecules( ["water_ions.gro", "water_ions.top"]) # Create a new system by adding the water to the original molecule. if molecule is not None: if type(molecule) is _System: # Extract the non-water molecules from the original system. non_waters = [ mol for mol in molecule.getMolecules() if not mol.isWater() ] # Create a system by adding these to the water and ion # molecules from gmx solvate, which will include the # original waters. system = _System(non_waters + water_ions.getMolecules()) else: system = molecule + water_ions.getMolecules() # Add all of the water molecules' properties to the new system. for prop in water_ions._sire_system.propertyKeys(): prop = property_map.get(prop, prop) # Add the space property from the water system. system._sire_system.setProperty( prop, water_ions._sire_system.property(prop)) else: system = water_ions # Store the name of the water model as a system property. system._sire_system.setProperty("water_model", _SireBase.wrap(model)) return system