#config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 set_session(tf.Session(config=config)) datapath = '' modelpath = 'model_speech' if (not os.path.exists(modelpath)): # 判断保存模型的目录是否存在 os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉 system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断 if (system_type == 'Windows'): datapath = 'E:\\语音数据集' elif (system_type == 'Linux'): datapath = 'dataset' else: print('*[Message] Unknown System\n') datapath = 'dataset' ms = ModelSpeech(datapath) ms.LoadModel( os.path.join(modelpath, 'm251', 'speech_model251_e_0_step_42500.model')) ms.TestModel(datapath, str_dataset='test', data_count=128, out_report=True) #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00241I0053.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00020I0087.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav') #print('*[提示] 语音识别结果:\n',r)
if (not os.path.exists(modelpath)): # 判断保存模型的目录是否存在 os.makedirs(modelpath) # 如果不存在,就新建一个,避免之后保存模型的时候炸掉 system_type = plat.system() # 由于不同的系统的文件路径表示不一样,需要进行判断 if (system_type == 'Windows'): datapath = 'I:\\python_speech_file' modelpath = modelpath + '\\' elif (system_type == 'Linux'): datapath = 'dataset' modelpath = modelpath + '/' else: print('*[Message] Unknown System\n') datapath = 'dataset' modelpath = modelpath + '/' ms = ModelSpeech(datapath) ms.LoadModel(modelpath + 'm251/speech_model251_e_0_step_79500.model') ms.TestModel(datapath, str_dataset='dev', data_count=256, out_report=True) #for index in range(10): #ms.TestModel(datapath, str_dataset='test', data_count = 512, out_report = True) #print(rate/10) #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00241I0053.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\ST-CMDS-20170001_1-OS\\20170001P00020I0087.wav') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\train\\A11\\A11_167.WAV') #r = ms.RecognizeSpeech_FromFile('E:\\语音数据集\\wav\\test\\D4\\D4_750.wav') #print('*[提示] 语音识别结果:\n',r)