예제 #1
0
def main(night_name=None, reffile=None):
    """
    cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_DRIFT_E2DS_spirou.py [night_directory] [reffile]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param reffile: string, the reference file to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with reference file being None (i.e. get from sys.argv)
    if reffile is None:
        customargs = spirouStartup.GetCustomFromRuntime(
            p, [0], [str], ['reffile'])
    else:
        customargs = dict(reffile=reffile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='reffile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE'])
    p['REFFILENAME'] = reffilename
    p.set_source('REFFILENAME', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename)
    # add to loc
    loc = ParamDict()
    loc['SPEREF'] = speref
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # manually set OBJNAME to FP
    p['OBJNAME'] = 'FP'

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # # get wave image
    # wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber,
    #                                    return_wavemap=True)
    # _, loc['WAVE'] = wout
    # loc.set_source('WAVE', __NAME__+'/main() + /spirouImage.GetWaveSolution')

    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # get flat
    p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # ----------------------------------------------------------------------
    # Background correction
    # ----------------------------------------------------------------------
    # log that we are performing background correction
    if p['IC_DRIFT_BACK_CORR']:
        WLOG(p, '', 'Perform background correction')
        # get the box size from constants
        bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
        # Loop around the orders
        for order_num in range(loc['NUMBER_ORDERS']):
            miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num],
                                                  bsize)
            loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['SPEREF'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # ------------------------------------------------------------------
    # Reference plots
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        # sPlt.drift_plot_selected_wave_ref(p, loc)
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['SPEREF'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    # run the RV coravelation function with these parameters
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # get the reference RV in m/s
    rvref = loc['RV'] * 1000.

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ------------------------------------------------------------------
    # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from
    #    ref file
    # ------------------------------------------------------------------
    # get files
    listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr)
    # get the number of files
    nfiles = len(listfiles)
    # Log the number of files found
    wmsgs = [
        'Number of files found on directory = {0}'.format(nfiles),
        '\tExtensions allowed:'
    ]
    for listtype in listtypes:
        wmsgs.append('\t\t - {0}'.format(listtype))
    WLOG(p, 'info', wmsgs)

    # ------------------------------------------------------------------
    # Set up Extract storage for all files
    # ------------------------------------------------------------------
    # decide whether we need to skip (for large number of files)
    if len(listfiles) >= p['DRIFT_NLARGE']:
        skip = p['DRIFT_E2DS_FILE_SKIP']
        nfiles = int(nfiles / skip)
    else:
        skip = 1
    # set up storage
    loc['MDRIFT'] = np.zeros(nfiles)
    loc['MERRDRIFT'] = np.zeros(nfiles)
    loc['DELTATIME'] = np.zeros(nfiles)
    loc['FLUXRATIO'] = np.zeros(nfiles)
    # set loc sources
    keys = ['mdrift', 'merrdrift', 'deltatime']
    loc.set_sources(keys, __NAME__ + '/main()()')

    # ------------------------------------------------------------------
    # Loop around all files: correct for dark, reshape, extract and
    #     calculate dvrms and meanpond
    # ------------------------------------------------------------------
    wref = 1
    for i_it in range(nfiles):
        # get file for this iteration
        fpfile = listfiles[::skip][i_it]
        # Log the file we are reading
        wmsg = 'Reading file {0}'
        WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1]))
        # ------------------------------------------------------------------
        # read e2ds files and get timestamp
        # ------------------------------------------------------------------
        # read data
        rout = spirouImage.ReadData(p, filename=fpfile, log=False)
        loc['SPE'], hdri, nxi, nyi = rout
        # get acqtime
        bjdspe = spirouImage.GetAcqTime(p,
                                        hdri,
                                        name='acqtime',
                                        return_value=1,
                                        kind='julian')
        # test whether we want to subtract background
        if p['IC_DRIFT_BACK_CORR']:
            # Loop around the orders
            for order_num in range(loc['NUMBER_ORDERS']):
                # get the box size from constants
                bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE']
                # Measurethe min and max flux
                miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num],
                                                      bsize)
                # subtract off the background (miny)
                loc['SPE'][order_num] = loc['SPE'][order_num] - miny

        # ------------------------------------------------------------------
        # calculate flux ratio
        # ------------------------------------------------------------------
        sorder = p['IC_DRIFT_ORDER_PLOT']
        fratio = np.nansum(loc['SPE'][sorder]) / np.nansum(
            loc['SPEREF'][sorder])
        loc['FLUXRATIO'][i_it] = fratio

        # ------------------------------------------------------------------
        # Compute photon noise uncertainty for reference file
        # ------------------------------------------------------------------
        # set up the arguments for DeltaVrms2D
        dargs = [loc['SPE'], loc['WAVE_LL']]
        dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                       size=p['IC_DRIFT_BOXSIZE'],
                       threshold=p['IC_DRIFT_MAXFLUX'])
        # run DeltaVrms2D
        dvrmsspe, wmeanspe = spirouRV.DeltaVrms2D(*dargs, **dkwargs)

        # ----------------------------------------------------------------------
        # Do correlation
        # ----------------------------------------------------------------------
        # calculate and fit the CCF
        loc['E2DSFF'] = loc['SPE'] * 1.
        loc.set_source('E2DSFF', __NAME__ + '/main()')

        loc = spirouRV.Coravelation(p, loc)

        # ----------------------------------------------------------------------
        # Correlation stats
        # ----------------------------------------------------------------------
        # get the maximum number of orders to use
        nbmax = p['CCF_NUM_ORDERS_MAX']
        # get the average ccf
        loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
        # normalize the average ccf
        normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
        # get the fit for the normalized average ccf
        ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                           loc['RV_CCF'],
                                           normalized_ccf,
                                           fit_type=1)
        # calculate the mean RV
        meanrv = ccf_res[1] * 1000. - rvref
        # ------------------------------------------------------------------
        # Calculate delta time
        # ------------------------------------------------------------------
        # calculate the time from reference (in hours)
        deltatime = (bjdspe - bjdref) * 24

        err_meanrv = np.sqrt(dvrmsref + dvrmsspe)
        merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2))
        # Log the RV properties
        wmsg = ('Time from ref= {0:.2f} h '
                '- Flux Ratio= {1:.2f} '
                '- Drift mean= {2:.2f} +- '
                '{3:.2f} m/s')
        wargs = [deltatime, loc['FLUXRATIO'][i_it], meanrv, merr]
        WLOG(p, '', wmsg.format(*wargs))
        # add this iteration to storage
        loc['MDRIFT'][i_it] = meanrv
        loc['MERRDRIFT'][i_it] = merr
        loc['DELTATIME'][i_it] = deltatime

    # ------------------------------------------------------------------
    # set source
    loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()')
    # ------------------------------------------------------------------
    # peak to peak drift
    driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT'])
    driftrms = np.std(loc['MDRIFT'])
    # log th etotal drift peak-to-peak and rms
    wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in '
            '{2:.2f} hour')
    wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])]
    WLOG(p, '', wmsg.format(*wargs))

    # ------------------------------------------------------------------
    # Plot of mean drift
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot delta time against median drift
        sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds')

    # ------------------------------------------------------------------
    # Save drift values to file
    # ------------------------------------------------------------------
    # # get raw input file name
    # raw_infile = os.path.basename(p['REFFILE'])
    # # construct filename
    # driftfits, tag = spirouConfig.Constants.DRIFTCCF_E2DS_FITS_FILE(p)
    # driftfitsname = os.path.split(driftfits)[-1]
    # # log that we are saving drift values
    # wmsg = 'Saving drift values of Fiber {0} in {1}'
    # WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname))
    # # add keys from original header file
    # hdict = spirouImage.CopyOriginalKeys(hdr)
    # # add the reference RV
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REF_RV'], value=rvref)
    #
    # # set the version
    # hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # # set the input files
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE'])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile)
    # # save drift values
    # p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict)

    # ------------------------------------------------------------------
    # print .tbl result
    # ------------------------------------------------------------------
    # construct filename
    drifttbl = spirouConfig.Constants.DRIFTCCF_E2DS_TBL_FILE(p)
    drifttblname = os.path.split(drifttbl)[-1]
    # construct and write table
    columnnames = ['time', 'drift', 'drifterr']
    columnformats = ['7.4f', '6.2f', '6.3f']
    columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']]
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    wmsg = 'Average Drift saved in {0} Saved '
    WLOG(p, '', wmsg.format(drifttblname))
    spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None,
         e2dsfile=None,
         mask=None,
         rv=None,
         width=None,
         step=None):
    """
    cal_CCF_E2DS_spirou.py main function, if arguments are None uses
    arguments from run time i.e.:
        cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV]
                               [width] [step]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param e2dsfile: string, the E2DS file to use
    :param mask: string, the mask file to use (i.e. "UrNe.mas")
    :param rv: float, the target RV to use
    :param width: float, the CCF width to use
    :param step: float, the CCF step to use

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------
    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    # deal with arguments being None (i.e. get from sys.argv)
    pos = [0, 1, 2, 3, 4]
    fmt = [str, str, float, float, float]
    name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step']
    lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step']
    req = [True, True, True, False, False]
    call = [e2dsfile, mask, rv, width, step]
    call_priority = [True, True, True, True, True]
    # now get custom arguments
    customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req,
                                                    call, call_priority, lname)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsfile='e2dsfile',
                                    mainfitsdir='reduced')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE'])

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Deal with optional run time arguments
    # ----------------------------------------------------------------------
    # define default arguments (if ccf_width and ccf_step are not defined
    # in function call or run time arguments
    if 'ccf_width' not in p:
        p['CCF_WIDTH'] = p['IC_CCF_WIDTH']
    if 'ccf_step' not in p:
        p['CCF_STEP'] = p['IC_CCF_STEP']

    # ----------------------------------------------------------------------
    # Read image file
    # ----------------------------------------------------------------------
    # read the image data
    e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename)
    # add to loc
    loc = ParamDict()
    loc['E2DS'] = e2ds
    loc['NUMBER_ORDERS'] = nbo
    loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian')
    # get obj name
    p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str)

    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']

    # ----------------------------------------------------------------------
    #  Earth Velocity calculation
    # ----------------------------------------------------------------------
    if p['IC_IMAGE_TYPE'] == 'H4RG':
        p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr)

    # ----------------------------------------------------------------------
    # Read wavelength solution
    # ----------------------------------------------------------------------
    # log
    WLOG(p, '', 'Reading wavelength solution ')
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    param_ll, wave_ll, wavefile, wsource = wout
    # save to storage
    loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()'
    loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source)

    # ----------------------------------------------------------------------
    # Read Flat file
    # ----------------------------------------------------------------------
    # TODO We do not need to correct FLAT
    # log
    # WLOG(p, '', 'Reading Flat-Field ')

    # get flat
    # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr)
    # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile')
    # get all values in flat that are zero to 1
    # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT'])

    # get blaze
    # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr)
    p, blaze0 = spirouImage.ReadBlazeFile(p, hdr)

    # ----------------------------------------------------------------------
    # Preliminary set up = no flat, no blaze
    # ----------------------------------------------------------------------
    # reset flat to all ones
    # loc['FLAT'] = np.ones((nbo, nx))
    # set blaze to all ones (if not bug in correlbin !!!
    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((nbo, nx))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_sources(['blaze'], __NAME__ + '/main()')

    # Modification of E2DS array  with N.A.N
    if np.isnan(np.sum(e2ds)):
        WLOG(p, 'warning', 'NaN values found in e2ds, converting process')
        #  First basic approach Replacing N.A.N by zeros
        #    e2ds[np.isnan(e2ds)] = 0

        # Second approach replacing N.A.N by the Adjusted Blaze
        e2dsb = e2ds / blaze0
        for i in np.arange(len(e2ds)):
            with warnings.catch_warnings(record=True) as _:
                rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])])
            if np.isnan(rap):
                rap = 0.0
            e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap)

    # ----------------------------------------------------------------------
    # correct extracted image for flat
    # ----------------------------------------------------------------------
    # loc['E2DSFF'] = e2ds/loc['FLAT']
    # loc['E2DSFF'] = e2ds*1.
    loc['E2DSFF'] = e2ds
    loc.set_source('E2DSFF', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Compute photon noise uncertainty for reference file
    # ----------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['E2DS'], loc['WAVE_LL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))
    wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s'
    WLOG(p, 'info', wmsg.format(wmeanref))
    # TEST N.A.N
    # loc['E2DSFF'][20:22,2000:3000]=np.nan
    # e2ds[20:30,1000:3000]=np.nan

    # ----------------------------------------------------------------------
    # Reference plots
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive session if needed
        sPlt.start_interactive_session(p)
        # plot FP spectral order
        sPlt.drift_plot_selected_wave_ref(p,
                                          loc,
                                          x=loc['WAVE_LL'],
                                          y=loc['E2DS'])
        # plot photon noise uncertainty
        sPlt.drift_plot_photon_uncertainty(p, loc)

    # ----------------------------------------------------------------------
    # Get template RV (from ccf_mask)
    # ----------------------------------------------------------------------
    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # check and deal with mask in microns (should be in nm)
    if np.mean(loc['LL_MASK_CTR']) < 2.0:
        loc['LL_MASK_CTR'] *= 1000.0
        loc['LL_MASK_D'] *= 1000.0

    # ----------------------------------------------------------------------
    # Do correlation
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Correlation stats
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=0)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()

    # ----------------------------------------------------------------------
    # set the source
    keys = [
        'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))

    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # TODO: Needs doing
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # add to qc header lists
    qc_values.append('None')
    qc_names.append('None')
    qc_logic.append('None')
    qc_pass.append(1)
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ----------------------------------------------------------------------
    # archive ccf to table
    # ----------------------------------------------------------------------
    # construct filename
    res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p)
    # log progress
    WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file))
    # define column names
    columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig']
    # define values for each column
    values = [
        loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'],
        np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]),
        loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2]
    ]
    # define the format for each column
    formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f']
    # construct astropy table from column names, values and formats
    table = spirouImage.MakeTable(p, columns, values, formats)
    # save table to file
    spirouImage.WriteTable(p, table, res_table_file, fmt='ascii')

    # ----------------------------------------------------------------------
    # archive ccf to fits file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['E2DSFILE'])
    # construct folder and filename
    corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p)
    corfilename = os.path.split(corfile)[-1]
    # log that we are archiving the CCF on file
    WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename))
    # get constants from p
    mask = p['CCF_MASK']
    # if file exists remove it
    if os.path.exists(corfile):
        os.remove(corfile)
    # add the average ccf to the end of ccf
    data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']])
    # add drs keys
    hdict = spirouImage.CopyOriginalKeys(hdr)
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag)
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='file',
                                     values=p['E2DSFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_INCCFMASK'],
                               value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add CCF keys
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s')
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CRVAL'],
                               value=loc['RV_CCF'][0])
    # the rv step
    rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_RV'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_WMREF'],
                               value=loc['WMEANREF'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CCF_LINES'],
                               value=np.nansum(loc['TOT_LINE']))
    # add berv values
    hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_BERV_MAX'],
                               value=loc['BERV_MAX'])
    # write image and add header keys (via hdict)
    p = spirouImage.WriteImage(p, corfile, data, hdict)

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return a copy of locally defined variables in the memory
    return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None):
    """
    cal_WAVE_E2DS.py main function, if night_name and files are None uses
    arguments from run time i.e.:
        cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles]

    :param night_name: string or None, the folder within data raw directory
                                containing files (also reduced directory) i.e.
                                /data/raw/20170710 would be "20170710" but
                                /data/raw/AT5/20180409 would be "AT5/20180409"
    :param fpfile: string, or None, the FP file to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)
    :param hcfiles: string, list or None, the list of HC files to use for
                  arg_file_names and fitsfilename
                  (if None assumes arg_file_names was set from run time)

    :return ll: dictionary, containing all the local variables defined in
                main
    """
    # ----------------------------------------------------------------------
    # Set up
    # ----------------------------------------------------------------------

    # test files TC2
    # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/'
    # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits'
    # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits']

    # test files TC3
    # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/'
    # fpfile = '2294108a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294115c_pp_e2dsff_AB.fits']

    # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/'
    # fpfile = '2294223a_pp_e2dsff_AB.fits'
    # hcfiles = ['2294230c_pp_e2dsff_AB.fits']

    # get parameters from config files/run time args/load paths + calibdb
    p = spirouStartup.Begin(recipe=__NAME__)
    if hcfiles is None or fpfile is None:
        names, types = ['fpfile', 'hcfiles'], [str, str]
        customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1],
                                                        types,
                                                        names,
                                                        last_multi=True)
    else:
        customargs = dict(hcfiles=hcfiles, fpfile=fpfile)
    # get parameters from configuration files and run time arguments
    p = spirouStartup.LoadArguments(p,
                                    night_name,
                                    customargs=customargs,
                                    mainfitsdir='reduced',
                                    mainfitsfile='hcfiles')

    # ----------------------------------------------------------------------
    # Construct reference filename and get fiber type
    # ----------------------------------------------------------------------
    p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE'])
    fiber1 = str(p['FIBER'])
    p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES'])
    fiber2 = str(p['FIBER'])
    # set the hcfilename to the first hcfilenames
    hcfitsfilename = hcfilenames[0]

    # ----------------------------------------------------------------------
    # Once we have checked the e2dsfile we can load calibDB
    # ----------------------------------------------------------------------
    # as we have custom arguments need to load the calibration database
    p = spirouStartup.LoadCalibDB(p)

    # ----------------------------------------------------------------------
    # Have to check that the fibers match
    # ----------------------------------------------------------------------
    if fiber1 == fiber2:
        p['FIBER'] = fiber1
        fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()'
        p.set_source('FIBER', fsource)
    else:
        emsg = 'Fiber not matching for {0} and {1}, should be the same'
        eargs = [hcfitsfilename, fpfitsfilename]
        WLOG(p, 'error', emsg.format(*eargs))
    # set the fiber type
    p['FIB_TYP'] = [p['FIBER']]
    p.set_source('FIB_TYP', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Read FP and HC files
    # ----------------------------------------------------------------------

    # read and combine all HC files except the first (fpfitsfilename)
    rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]]
    p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs)
    # read first file (fpfitsfilename)
    fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename)

    # TODO: ------------------------------------------------------------
    # TODO remove to test NaNs
    # TODO: ------------------------------------------------------------
    # hcmask = np.isfinite(hcdata)
    # fpmask = np.isfinite(fpdata)
    # hcdata[~hcmask] = 0.0
    # fpdata[~fpmask] = 0.0
    # TODO: ------------------------------------------------------------

    # add data and hdr to loc
    loc = ParamDict()
    loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr
    loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr

    # set the source
    sources = ['HCDATA', 'HCHDR']
    loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()')
    sources = ['FPDATA', 'FPHDR']
    loc.set_sources(sources, 'spirouImage.ReadImage()')

    # ----------------------------------------------------------------------
    # Get basic image properties for reference file
    # ----------------------------------------------------------------------
    # get sig det value
    p = spirouImage.GetSigdet(p, hchdr, name='sigdet')
    # get exposure time
    p = spirouImage.GetExpTime(p, hchdr, name='exptime')
    # get gain
    p = spirouImage.GetGain(p, hchdr, name='gain')
    # get acquisition time
    p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian')
    bjdref = p['ACQTIME']
    # set sigdet and conad keywords (sigdet is changed later)
    p['KW_CCD_SIGDET'][1] = p['SIGDET']
    p['KW_CCD_CONAD'][1] = p['GAIN']
    # get lamp parameters
    p = spirouTHORCA.GetLampParams(p, hchdr)

    # get number of orders
    # we always get fibre A number because AB is doubled in constants file
    loc['NBO'] = p['QC_LOC_NBO_FPALL']['A']
    loc.set_source('NBO', __NAME__ + '.main()')
    # get number of pixels in x from hcdata size
    loc['NBPIX'] = loc['HCDATA'].shape[1]
    loc.set_source('NBPIX', __NAME__ + '.main()')

    # ----------------------------------------------------------------------
    # Read blaze
    # ----------------------------------------------------------------------
    # get tilts
    p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr)
    loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile')
    # make copy of blaze (as it's overwritten later)
    loc['BLAZE2'] = np.copy(loc['BLAZE'])

    # ----------------------------------------------------------------------
    # Read wave solution
    # ----------------------------------------------------------------------
    # wavelength file; we will use the polynomial terms in its header,
    # NOT the pixel values that would need to be interpolated

    # set source of wave file
    wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution'
    # Force A and B to AB solution
    if p['FIBER'] in ['A', 'B']:
        wave_fiber = 'AB'
    else:
        wave_fiber = p['FIBER']
    # get wave image
    wout = spirouImage.GetWaveSolution(p,
                                       hdr=hchdr,
                                       return_wavemap=True,
                                       return_filename=True,
                                       fiber=wave_fiber)
    loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout
    loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'],
                    wsource)
    poly_wave_sol = loc['WAVEPARAMS']

    # ----------------------------------------------------------------------
    # Check that wave parameters are consistent with "ic_ll_degr_fit"
    # ----------------------------------------------------------------------
    loc = spirouImage.CheckWaveSolConsistency(p, loc)

    # ----------------------------------------------------------------------
    # Read UNe solution
    # ----------------------------------------------------------------------
    wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p)
    loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne
    source = __NAME__ + '.main() + spirouImage.ReadLineList()'
    loc.set_sources(['ll_line', 'ampl_line'], source)

    # ----------------------------------------------------------------------
    # Generate wave map from wave solution
    # ----------------------------------------------------------------------
    loc = spirouWAVE.generate_wave_map(p, loc)

    # ----------------------------------------------------------------------
    # Find Gaussian Peaks in HC spectrum
    # ----------------------------------------------------------------------
    loc = spirouWAVE.find_hc_gauss_peaks(p, loc)

    # ----------------------------------------------------------------------
    # Start plotting session
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # start interactive plot
        sPlt.start_interactive_session(p)

    # ----------------------------------------------------------------------
    # Fit Gaussian peaks (in triplets) to
    # ----------------------------------------------------------------------
    loc = spirouWAVE.fit_gaussian_triplets(p, loc)

    # ----------------------------------------------------------------------
    # Generate Resolution map and line profiles
    # ----------------------------------------------------------------------
    # log progress
    wmsg = 'Generating resolution map and '
    # generate resolution map
    loc = spirouWAVE.generate_resolution_map(p, loc)
    # map line profile map
    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_line_profiles(p, loc)

    # ----------------------------------------------------------------------
    # End plotting session
    # ----------------------------------------------------------------------
    # end interactive session
    if p['DRS_PLOT'] > 0:
        sPlt.end_interactive_session(p)

    # ----------------------------------------------------------------------
    # Set up all_lines storage
    # ----------------------------------------------------------------------

    # initialise up all_lines storage
    all_lines_1 = []

    # get parameters from p
    n_ord_start = p['IC_HC_N_ORD_START_2']
    n_ord_final = p['IC_HC_N_ORD_FINAL_2']
    pixel_shift_inter = p['PIXEL_SHIFT_INTER']
    pixel_shift_slope = p['PIXEL_SHIFT_SLOPE']

    # get values from loc
    xgau = np.array(loc['XGAU_T'])
    dv = np.array(loc['DV_T'])
    fit_per_order = np.array(loc['POLY_WAVE_SOL'])
    ew = np.array(loc['EW_T'])
    peak = np.array(loc['PEAK_T'])
    amp_catalog = np.array(loc['AMP_CATALOG'])
    wave_catalog = np.array(loc['WAVE_CATALOG'])
    ord_t = np.array(loc['ORD_T'])

    # loop through orders
    for iord in range(n_ord_start, n_ord_final):
        # keep relevant lines
        # -> right order
        # -> finite dv
        gg = (ord_t == iord) & (np.isfinite(dv))
        nlines = np.nansum(gg)
        # put lines into ALL_LINES structure
        # reminder:
        # gparams[0] = output wavelengths
        # gparams[1] = output sigma(gauss fit width)
        # gparams[2] = output amplitude(gauss fit)
        # gparams[3] = difference in input / output wavelength
        # gparams[4] = input amplitudes
        # gparams[5] = output pixel positions
        # gparams[6] = output pixel sigma width (gauss fit width in pixels)
        # gparams[7] = output weights for the pixel position

        chebval = np.polynomial.chebyshev.chebval

        # dummy array for weights
        test = np.ones(np.shape(xgau[gg]), 'd') * 1e4
        # get the final wavelength value for each peak in order
        output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg])
        # output_wave_1 = chebval(xgau[gg], fit_per_order[iord])
        # convert the pixel equivalent width to wavelength units
        xgau_ew_ini = xgau[gg] - ew[gg] / 2
        xgau_ew_fin = xgau[gg] + ew[gg] / 2
        ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini)
        ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin)
        # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord])
        # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord])
        ew_ll = ew_ll_fin - ew_ll_ini
        # put all lines in the order into array
        gau_params = np.column_stack(
            (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1,
             amp_catalog[gg], xgau[gg], ew[gg], test))
        # append the array for the order into a list
        all_lines_1.append(gau_params)
        # save dv in km/s and auxiliary order number
        # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/
        #                        output_wave_1))
        # ord_save = np.concatenate((ord_save, test*iord))

    # add to loc
    loc['ALL_LINES_1'] = all_lines_1
    loc['LL_PARAM_1'] = np.array(fit_per_order)
    loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2'])
    loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()')

    # For compatibility w/already defined functions, I need to save
    # here all_lines_2
    all_lines_2 = list(all_lines_1)
    loc['ALL_LINES_2'] = all_lines_2
    # loc['LL_PARAM_2'] = np.fliplr(fit_per_order)
    # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2'])
    # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()')

    # ------------------------------------------------------------------
    # Littrow test
    # ------------------------------------------------------------------

    start = p['IC_LITTROW_ORDER_INIT_1']
    end = p['IC_LITTROW_ORDER_FINAL_1']

    # calculate echelle orders
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # reset Littrow fit degree
    p['IC_LITTROW_FIT_DEG_1'] = 7

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=1)

    # ------------------------------------------------------------------
    # Incorporate FP into solution
    # ------------------------------------------------------------------
    # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration)
    loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1'])
    loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1'])
    # only use FP if switched on in constants file
    if p['IC_WAVE_USE_FP']:
        # ------------------------------------------------------------------
        # Find FP lines
        # ------------------------------------------------------------------
        # print message to screen
        wmsg = 'Identification of lines in reference file: {0}'
        WLOG(p, '', wmsg.format(fpfile))

        # ------------------------------------------------------------------
        # Get the FP solution
        # ------------------------------------------------------------------

        loc = spirouTHORCA.FPWaveSolutionNew(p, loc)

        # ------------------------------------------------------------------
        # FP solution plots
        # ------------------------------------------------------------------
        if p['DRS_PLOT'] > 0:
            # Plot the FP extracted spectrum against wavelength solution
            sPlt.wave_plot_final_fp_order(p, loc, iteration=1)
            # Plot the measured FP cavity width offset against line number
            sPlt.wave_local_width_offset_plot(p, loc)
            # Plot the FP line wavelength residuals
            sPlt.wave_fp_wavelength_residuals(p, loc)

    # ------------------------------------------------------------------
    # Create new wavelength solution
    # ------------------------------------------------------------------
    # TODO: Melissa fault - fix later
    p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'],
                                   p['IC_FP_N_ORD_START'])
    p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'],
                                   p['IC_FP_N_ORD_FINAL'])
    start = p['IC_HC_N_ORD_START_2']
    end = p['IC_HC_N_ORD_FINAL_2']

    # recalculate echelle orders for Fit1DSolution
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # select the orders to fit
    lls = loc['LITTROW_EXTRAP_SOL_1'][start:end]
    loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2)
    # from here, LL_OUT_2 wil be 0-47

    # ------------------------------------------------------------------
    # Repeat Littrow test
    # ------------------------------------------------------------------
    start = p['IC_LITTROW_ORDER_INIT_2']
    end = p['IC_LITTROW_ORDER_FINAL_2']
    # recalculate echelle orders for Littrow check
    o_orders = np.arange(start, end)
    echelle_order = p['IC_HC_T_ORDER_START'] - o_orders
    loc['ECHELLE_ORDERS'] = echelle_order
    loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()')

    # Do Littrow check
    ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True)
    loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs)

    # Plot wave solution littrow check
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_check_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # extrapolate Littrow solution
    # ------------------------------------------------------------------
    ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2)
    loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs)

    # ------------------------------------------------------------------
    # Plot littrow solution
    # ------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # plot littrow x pixels against fitted wavelength solution
        sPlt.wave_littrow_extrap_plot(p, loc, iteration=2)

    # ------------------------------------------------------------------
    # Join 0-47 and 47-49 solutions
    # ------------------------------------------------------------------
    loc = spirouTHORCA.JoinOrders(p, loc)

    # ------------------------------------------------------------------
    # Plot single order, wavelength-calibrated, with found lines
    # ------------------------------------------------------------------

    if p['DRS_PLOT'] > 0:
        sPlt.wave_ea_plot_single_order(p, loc)

    # ----------------------------------------------------------------------
    # Do correlation on FP spectra
    # ----------------------------------------------------------------------

    # ------------------------------------------------------------------
    # Compute photon noise uncertainty for FP
    # ------------------------------------------------------------------
    # set up the arguments for DeltaVrms2D
    dargs = [loc['FPDATA'], loc['LL_FINAL']]
    dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'],
                   size=p['IC_DRIFT_BOXSIZE'],
                   threshold=p['IC_DRIFT_MAXFLUX'])
    # run DeltaVrms2D
    dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs)
    # save to loc
    loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref
    loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()')
    # log the estimated RV uncertainty
    wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s'
    WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref))

    # Use CCF Mask function with drift constants
    p['CCF_MASK'] = p['DRIFT_CCF_MASK']
    p['TARGET_RV'] = p['DRIFT_TARGET_RV']
    p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH']
    p['CCF_STEP'] = p['DRIFT_CCF_STEP']
    p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH']
    p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP']

    # get the CCF mask from file (check location of mask)
    loc = spirouRV.GetCCFMask(p, loc)

    # TODO Check why Blaze makes bugs in correlbin
    loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX']))
    # set sources
    # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()')
    loc.set_source('blaze', __NAME__ + '/main()')

    # ----------------------------------------------------------------------
    # Do correlation on FP
    # ----------------------------------------------------------------------
    # calculate and fit the CCF
    loc['E2DSFF'] = np.array(loc['FPDATA'])
    loc.set_source('E2DSFF', __NAME__ + '/main()')
    p['CCF_FIT_TYPE'] = 1
    loc['BERV'] = 0.0
    loc['BERV_MAX'] = 0.0
    loc['BJD'] = 0.0

    # run the RV coravelation function with these parameters
    loc['WAVE_LL'] = np.array(loc['LL_FINAL'])
    loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL'])
    loc = spirouRV.Coravelation(p, loc)

    # ----------------------------------------------------------------------
    # Update the Correlation stats with values using fiber C (FP) drift
    # ----------------------------------------------------------------------
    # get the maximum number of orders to use
    nbmax = p['CCF_NUM_ORDERS_MAX']
    # get the average ccf
    loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0)
    # normalize the average ccf
    normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF'])
    # get the fit for the normalized average ccf
    ccf_res, ccf_fit = spirouRV.FitCCF(p,
                                       loc['RV_CCF'],
                                       normalized_ccf,
                                       fit_type=1)
    loc['CCF_RES'] = ccf_res
    loc['CCF_FIT'] = ccf_fit
    # get the max cpp
    loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum(
        loc['PIX_PASSED_ALL'])
    # get the RV value from the normalised average ccf fit center location
    loc['RV'] = float(ccf_res[1])
    # get the contrast (ccf fit amplitude)
    loc['CONTRAST'] = np.abs(100 * ccf_res[0])
    # get the FWHM value
    loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm()
    # set the source
    keys = [
        'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT'
    ]
    loc.set_sources(keys, __NAME__ + '/main()')
    # ----------------------------------------------------------------------
    # log the stats
    wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] '
            'FWHM={2:.4f}[km/s] maxcpp={3:.1f}')
    wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']]
    WLOG(p, 'info', wmsg.format(*wargs))
    # ----------------------------------------------------------------------
    # rv ccf plot
    # ----------------------------------------------------------------------
    if p['DRS_PLOT'] > 0:
        # Plot rv vs ccf (and rv vs ccf_fit)
        p['OBJNAME'] = 'FP'
        sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit)

    # TODO : Add QC of the FP CCF

    # ----------------------------------------------------------------------
    # Quality control
    # ----------------------------------------------------------------------
    # get parameters ffrom p
    p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX']
    p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX']
    # set passed variable and fail message list
    passed, fail_msg = True, []
    qc_values, qc_names, qc_logic, qc_pass = [], [], [], []
    # ----------------------------------------------------------------------
    # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max
    if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']:
        fmsg = 'Sigma too high ({0:.5f} > {1:.5f})'
        fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX']))
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['SIG1'])
    qc_names.append('SIG1')
    qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX']))
    # ----------------------------------------------------------------------
    # check the difference between consecutive orders is always positive
    # get the differences
    wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1]
    if np.min(wave_diff) < 0:
        fmsg = 'Negative wavelength difference between orders'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(np.min(wave_diff))
    qc_names.append('MIN WAVE DIFF')
    qc_logic.append('MIN WAVE DIFF < 0')
    # ----------------------------------------------------------------------
    # check for infinites and NaNs in mean residuals from fit
    if ~np.isfinite(loc['X_MEAN_2']):
        # add failed message to the fail message list
        fmsg = 'NaN or Inf in X_MEAN_2'
        fail_msg.append(fmsg)
        passed = False
        qc_pass.append(0)
    else:
        qc_pass.append(1)
    # add to qc header lists
    qc_values.append(loc['X_MEAN_2'])
    qc_names.append('X_MEAN_2')
    qc_logic.append('X_MEAN_2 not finite')
    # ----------------------------------------------------------------------
    # iterate through Littrow test cut values
    lit_it = 2
    # checks every other value
    # TODO: This QC check (or set of QC checks needs re-writing it is
    # TODO:    nearly impossible to understand
    for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2):
        # get x cut point
        x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it]
        # get the sigma for this cut point
        sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it]
        # get the abs min and max dev littrow values
        min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it])
        max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it])
        # get the corresponding order
        min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it]
        max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it]
        # check if sig littrow is above maximum
        rms_littrow_max = p['QC_RMS_LITTROW_MAX']
        dev_littrow_max = p['QC_DEV_LITTROW_MAX']
        if sig_littrow > rms_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                    '{1:.2f} > {2:.2f})')
            fargs = [x_cut_point, sig_littrow, rms_littrow_max]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(sig_littrow)
        qc_names.append('sig_littrow')
        qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max))
        # ----------------------------------------------------------------------
        # check if min/max littrow is out of bounds
        if np.max([max_littrow, min_littrow]) > dev_littrow_max:
            fmsg = ('Littrow test (x={0}) failed (min|max dev = '
                    '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})')
            fargs = [
                x_cut_point, min_littrow, max_littrow, dev_littrow_max,
                min_littrow_ord, max_littrow_ord
            ]
            fail_msg.append(fmsg.format(*fargs))
            passed = False
            qc_pass.append(0)

            # TODO: Should this be the QC header values?
            # TODO:   it does not change the outcome of QC (i.e. passed=False)
            # TODO:   So what is the point?
            # if sig was out of bounds, recalculate
            if sig_littrow > rms_littrow_max:
                # conditions
                check1 = min_littrow > dev_littrow_max
                check2 = max_littrow > dev_littrow_max
                # get the residuals
                respix = loc['LITTROW_YY_' + str(lit_it)][x_it]
                # check if both are out of bounds
                if check1 and check2:
                    # remove respective orders
                    worst_order = (min_littrow_ord, max_littrow_ord)
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if min is out of bounds
                elif check1:
                    # remove respective order
                    worst_order = min_littrow_ord
                    respix_2 = np.delete(respix, worst_order)
                    redo_sigma = True
                # check if max is out of bounds
                elif check2:
                    # remove respective order
                    worst_order = max_littrow_ord
                    respix_2 = np.delete(respix, max_littrow_ord)
                    redo_sigma = True
                # else do not recalculate sigma
                else:
                    redo_sigma, respix_2, worst_order = False, None, None
                    wmsg = 'No outlying orders, sig littrow not recalculated'
                    fail_msg.append(wmsg.format())

                # if outlying order, recalculate stats
                if redo_sigma:
                    mean = np.nansum(respix_2) / len(respix_2)
                    mean2 = np.nansum(respix_2**2) / len(respix_2)
                    rms = np.sqrt(mean2 - mean**2)
                    if rms > rms_littrow_max:
                        fmsg = ('Littrow test (x={0}) failed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        fail_msg.append(fmsg.format(*fargs))
                    else:
                        wargs = [
                            x_cut_point, rms, rms_littrow_max, worst_order
                        ]
                        wmsg = ('Littrow test (x={0}) passed (sig littrow = '
                                '{1:.2f} > {2:.2f} removing order {3})')
                        fail_msg.append(wmsg.format(*wargs))
        else:
            qc_pass.append(1)
        # add to qc header lists
        qc_values.append(np.max([max_littrow, min_littrow]))
        qc_names.append('max or min littrow')
        qc_logic.append('max or min littrow > {0:.2f}'
                        ''.format(dev_littrow_max))
    # finally log the failed messages and set QC = 1 if we pass the
    # quality control QC = 0 if we fail quality control
    if passed:
        WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -')
        p['QC'] = 1
        p.set_source('QC', __NAME__ + '/main()')
    else:
        for farg in fail_msg:
            wmsg = 'QUALITY CONTROL FAILED: {0}'
            WLOG(p, 'warning', wmsg.format(farg))
        p['QC'] = 0
        p.set_source('QC', __NAME__ + '/main()')
    # store in qc_params
    qc_params = [qc_names, qc_values, qc_logic, qc_pass]

    # ------------------------------------------------------------------
    # archive result in e2ds spectra
    # ------------------------------------------------------------------
    # get raw input file name(s)
    raw_infiles1 = []
    for hcfile in p['HCFILES']:
        raw_infiles1.append(os.path.basename(hcfile))
    raw_infile2 = os.path.basename(p['FPFILE'])
    # get wave filename
    wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p)
    wavefitsname = os.path.split(wavefits)[-1]
    # log progress
    wargs = [p['FIBER'], wavefits]
    wmsg = 'Write wavelength solution for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))
    # write solution to fitsfilename header
    # copy original keys
    hdict = spirouImage.CopyOriginalKeys(loc['HCHDR'])
    # add version number
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID'])
    # set the input files
    hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_CDBWAVE'],
                               value=loc['WAVEFILE'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVESOURCE'],
                               value=loc['WSOURCE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE1'],
                                     dim1name='fpfile',
                                     values=p['FPFILE'])
    hdict = spirouImage.AddKey1DList(p,
                                     hdict,
                                     p['KW_INFILE2'],
                                     dim1name='hcfile',
                                     values=p['HCFILES'])
    # add qc parameters
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC'])
    hdict = spirouImage.AddQCKeys(p, hdict, qc_params)
    # add wave solution date
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME1'],
                               value=p['MAX_TIME_HUMAN'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_TIME2'],
                               value=p['MAX_TIME_UNIX'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__)
    # add number of orders
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_ORD_N'],
                               value=loc['LL_PARAM_FINAL'].shape[0])
    # add degree of fit
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WAVE_LL_DEG'],
                               value=loc['LL_PARAM_FINAL'].shape[1] - 1)
    # add wave solution
    hdict = spirouImage.AddKey2DList(p,
                                     hdict,
                                     p['KW_WAVE_PARAM'],
                                     values=loc['LL_PARAM_FINAL'])

    # add FP CCF drift
    # target RV and width
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_TARG_RV'],
                               value=p['TARGET_RV'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_WIDTH'],
                               value=p['CCF_WIDTH'])
    # the rv step
    # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1])
    # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep)
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP'])

    # add ccf stats
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_DRIFT'],
                               value=loc['CCF_RES'][1])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_CONTRAST'],
                               value=loc['CONTRAST'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_MAXCPP'],
                               value=loc['MAXCPP'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK'])
    hdict = spirouImage.AddKey(p,
                               hdict,
                               p['KW_WFP_LINES'],
                               value=np.nansum(loc['TOT_LINE']))

    # write the wave "spectrum"
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1)
    p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict)

    # get filename for E2DS calibDB copy of FITSFILENAME
    e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0]
    wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]]
    wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}'
    WLOG(p, '', wmsg.format(*wargs))

    # make a copy of the E2DS file for the calibBD
    p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict)

    # only copy over if QC passed
    if p['QC']:
        # loop around hc files and update header with
        for hcfile in p['HCFILES']:
            raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile)
            p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1)
        # update fp file
        raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2)
        p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2)

    # ------------------------------------------------------------------
    # Save to result table
    # ------------------------------------------------------------------
    # calculate stats for table
    final_mean = 1000 * loc['X_MEAN_2']
    final_var = 1000 * loc['X_VAR_2']
    num_lines = int(np.nansum(loc['X_ITER_2'][:, 2]))  # loc['X_ITER_2']
    err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines)
    sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)])
    # construct filename
    wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p)
    wavetblname = os.path.basename(wavetbl)
    # construct and write table
    columnnames = [
        'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err',
        'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500',
        'rms_L3000', 'rms_L3500'
    ]
    columnformats = [
        '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}',
        '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}',
        '{:6.2f}'
    ]
    columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]],
                    [p['FIBER']], [final_mean], [final_var],
                    [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]],
                    [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]],
                    [sig_littrow[5]], [sig_littrow[6]]]
    # make table
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # merge table
    wmsg = 'Global result summary saved in {0}'
    WLOG(p, '', wmsg.format(wavetblname))
    spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst')

    # ----------------------------------------------------------------------
    # Save resolution and line profiles to file
    # ----------------------------------------------------------------------
    raw_infile = os.path.basename(p['FITSFILENAME'])
    # get wave filename
    resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p)
    resfitsname = os.path.basename(resfits)
    WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname))

    # make a copy of the E2DS file for the calibBD
    # set the version
    hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW'])
    hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3)

    # get res data in correct format
    resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict)
    # save to file
    p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts)

    # ------------------------------------------------------------------
    # Save line list table file
    # ------------------------------------------------------------------
    # construct filename
    # TODO proper column values
    wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p)
    wavelltblname = os.path.split(wavelltbl)[-1]
    # construct and write table
    columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx']
    columnformats = [
        '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}',
        '{:8.4f}'
    ]

    columnvalues = []
    # construct column values (flatten over orders)
    for it in range(len(loc['X_DETAILS_2'])):
        for jt in range(len(loc['X_DETAILS_2'][it][0])):
            row = [
                float(it), loc['X_DETAILS_2'][it][0][jt],
                loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt],
                loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt],
                loc['SCALE_2'][it][jt]
            ]
            columnvalues.append(row)

    # log saving
    wmsg = 'List of lines used saved in {0}'
    WLOG(p, '', wmsg.format(wavelltblname))

    # make table
    columnvalues = np.array(columnvalues).T
    table = spirouImage.MakeTable(p,
                                  columns=columnnames,
                                  values=columnvalues,
                                  formats=columnformats)
    # write table
    spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst')

    # ------------------------------------------------------------------
    # Move to calibDB and update calibDB
    # ------------------------------------------------------------------
    if p['QC']:
        # set the wave key
        keydb = 'WAVE_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, wavefits)
        # update the master calib DB file with new key
        spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR'])
        # set the hcref key
        keydb = 'HCREF_{0}'.format(p['FIBER'])
        # copy wave file to calibDB folder
        spirouDB.PutCalibFile(p, e2dscopy_filename)
        # update the master calib DB file with new key
        e2dscopyfits = os.path.split(e2dscopy_filename)[-1]
        spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR'])

    # ----------------------------------------------------------------------
    # End Message
    # ----------------------------------------------------------------------
    p = spirouStartup.End(p)
    # return p and loc
    return dict(locals())