def main(night_name=None, reffile=None): """ cal_DRIFT_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_DRIFT_E2DS_spirou.py [night_directory] [reffile] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param reffile: string, the reference file to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with reference file being None (i.e. get from sys.argv) if reffile is None: customargs = spirouStartup.GetCustomFromRuntime( p, [0], [str], ['reffile']) else: customargs = dict(reffile=reffile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='reffile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, reffilename = spirouStartup.SingleFileSetup(p, filename=p['REFFILE']) p['REFFILENAME'] = reffilename p.set_source('REFFILENAME', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data speref, hdr, nbo, nx = spirouImage.ReadData(p, reffilename) # add to loc loc = ParamDict() loc['SPEREF'] = speref loc['NUMBER_ORDERS'] = nbo loc.set_sources(['speref', 'number_orders'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # manually set OBJNAME to FP p['OBJNAME'] = 'FP' # ---------------------------------------------------------------------- # Earth Velocity calculation # ---------------------------------------------------------------------- if p['IC_IMAGE_TYPE'] == 'H4RG': p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr) # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # # get wave image # wout = spirouImage.GetWaveSolution(p, hdr=hdr, fiber=wave_fiber, # return_wavemap=True) # _, loc['WAVE'] = wout # loc.set_source('WAVE', __NAME__+'/main() + /spirouImage.GetWaveSolution') # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) param_ll, wave_ll, wavefile, wsource = wout # save to storage loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()' loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # get flat p, loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # ---------------------------------------------------------------------- # Background correction # ---------------------------------------------------------------------- # log that we are performing background correction if p['IC_DRIFT_BACK_CORR']: WLOG(p, '', 'Perform background correction') # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): miny, maxy = spirouBACK.MeasureMinMax(loc['SPEREF'][order_num], bsize) loc['SPEREF'][order_num] = loc['SPEREF'][order_num] - miny # ---------------------------------------------------------------------- # Preliminary set up = no flat, no blaze # ---------------------------------------------------------------------- # reset flat to all ones # loc['FLAT'] = np.ones((nbo, nx)) # set blaze to all ones (if not bug in correlbin !!! # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((nbo, nx)) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_sources(['blaze'], __NAME__ + '/main()') # ------------------------------------------------------------------ # Compute photon noise uncertainty for reference file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPEREF'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) # ------------------------------------------------------------------ # Reference plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order # sPlt.drift_plot_selected_wave_ref(p, loc) # plot photon noise uncertainty sPlt.drift_plot_photon_uncertainty(p, loc) # ---------------------------------------------------------------------- # Get template RV (from ccf_mask) # ---------------------------------------------------------------------- # Use CCF Mask function with drift constants p['CCF_MASK'] = p['DRIFT_CCF_MASK'] p['TARGET_RV'] = p['DRIFT_TARGET_RV'] p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH'] p['CCF_STEP'] = p['DRIFT_CCF_STEP'] # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # check and deal with mask in microns (should be in nm) if np.mean(loc['LL_MASK_CTR']) < 2.0: loc['LL_MASK_CTR'] *= 1000.0 loc['LL_MASK_D'] *= 1000.0 # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = np.array(loc['SPEREF']) loc.set_source('E2DSFF', __NAME__ + '/main()') p['CCF_FIT_TYPE'] = 1 # run the RV coravelation function with these parameters loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # ---------------------------------------------------------------------- # set the source keys = [ 'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # get the reference RV in m/s rvref = loc['RV'] * 1000. # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # ------------------------------------------------------------------ # Get all other files that match kw_OUTPUT and kw_EXT_TYPE from # ref file # ------------------------------------------------------------------ # get files listfiles, listtypes = spirouImage.GetSimilarDriftFiles(p, hdr) # get the number of files nfiles = len(listfiles) # Log the number of files found wmsgs = [ 'Number of files found on directory = {0}'.format(nfiles), '\tExtensions allowed:' ] for listtype in listtypes: wmsgs.append('\t\t - {0}'.format(listtype)) WLOG(p, 'info', wmsgs) # ------------------------------------------------------------------ # Set up Extract storage for all files # ------------------------------------------------------------------ # decide whether we need to skip (for large number of files) if len(listfiles) >= p['DRIFT_NLARGE']: skip = p['DRIFT_E2DS_FILE_SKIP'] nfiles = int(nfiles / skip) else: skip = 1 # set up storage loc['MDRIFT'] = np.zeros(nfiles) loc['MERRDRIFT'] = np.zeros(nfiles) loc['DELTATIME'] = np.zeros(nfiles) loc['FLUXRATIO'] = np.zeros(nfiles) # set loc sources keys = ['mdrift', 'merrdrift', 'deltatime'] loc.set_sources(keys, __NAME__ + '/main()()') # ------------------------------------------------------------------ # Loop around all files: correct for dark, reshape, extract and # calculate dvrms and meanpond # ------------------------------------------------------------------ wref = 1 for i_it in range(nfiles): # get file for this iteration fpfile = listfiles[::skip][i_it] # Log the file we are reading wmsg = 'Reading file {0}' WLOG(p, '', wmsg.format(os.path.split(fpfile)[-1])) # ------------------------------------------------------------------ # read e2ds files and get timestamp # ------------------------------------------------------------------ # read data rout = spirouImage.ReadData(p, filename=fpfile, log=False) loc['SPE'], hdri, nxi, nyi = rout # get acqtime bjdspe = spirouImage.GetAcqTime(p, hdri, name='acqtime', return_value=1, kind='julian') # test whether we want to subtract background if p['IC_DRIFT_BACK_CORR']: # Loop around the orders for order_num in range(loc['NUMBER_ORDERS']): # get the box size from constants bsize = p['DRIFT_PEAK_MINMAX_BOXSIZE'] # Measurethe min and max flux miny, maxy = spirouBACK.MeasureMinMax(loc['SPE'][order_num], bsize) # subtract off the background (miny) loc['SPE'][order_num] = loc['SPE'][order_num] - miny # ------------------------------------------------------------------ # calculate flux ratio # ------------------------------------------------------------------ sorder = p['IC_DRIFT_ORDER_PLOT'] fratio = np.nansum(loc['SPE'][sorder]) / np.nansum( loc['SPEREF'][sorder]) loc['FLUXRATIO'][i_it] = fratio # ------------------------------------------------------------------ # Compute photon noise uncertainty for reference file # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['SPE'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsspe, wmeanspe = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = loc['SPE'] * 1. loc.set_source('E2DSFF', __NAME__ + '/main()') loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) # calculate the mean RV meanrv = ccf_res[1] * 1000. - rvref # ------------------------------------------------------------------ # Calculate delta time # ------------------------------------------------------------------ # calculate the time from reference (in hours) deltatime = (bjdspe - bjdref) * 24 err_meanrv = np.sqrt(dvrmsref + dvrmsspe) merr = 1. / np.sqrt(np.nansum((1. / err_meanrv)**2)) # Log the RV properties wmsg = ('Time from ref= {0:.2f} h ' '- Flux Ratio= {1:.2f} ' '- Drift mean= {2:.2f} +- ' '{3:.2f} m/s') wargs = [deltatime, loc['FLUXRATIO'][i_it], meanrv, merr] WLOG(p, '', wmsg.format(*wargs)) # add this iteration to storage loc['MDRIFT'][i_it] = meanrv loc['MERRDRIFT'][i_it] = merr loc['DELTATIME'][i_it] = deltatime # ------------------------------------------------------------------ # set source loc.set_sources(['mdrift', 'merrdrift'], __NAME__ + '/main()()') # ------------------------------------------------------------------ # peak to peak drift driftptp = np.max(loc['MDRIFT']) - np.min(loc['MDRIFT']) driftrms = np.std(loc['MDRIFT']) # log th etotal drift peak-to-peak and rms wmsg = ('Total drift Peak-to-Peak={0:.3f} m/s RMS={1:.3f} m/s in ' '{2:.2f} hour') wargs = [driftptp, driftrms, np.max(loc['DELTATIME'])] WLOG(p, '', wmsg.format(*wargs)) # ------------------------------------------------------------------ # Plot of mean drift # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot delta time against median drift sPlt.drift_plot_dtime_against_mdrift(p, loc, kind='e2ds') # ------------------------------------------------------------------ # Save drift values to file # ------------------------------------------------------------------ # # get raw input file name # raw_infile = os.path.basename(p['REFFILE']) # # construct filename # driftfits, tag = spirouConfig.Constants.DRIFTCCF_E2DS_FITS_FILE(p) # driftfitsname = os.path.split(driftfits)[-1] # # log that we are saving drift values # wmsg = 'Saving drift values of Fiber {0} in {1}' # WLOG(p, '', wmsg.format(p['FIBER'], driftfitsname)) # # add keys from original header file # hdict = spirouImage.CopyOriginalKeys(hdr) # # add the reference RV # hdict = spirouImage.AddKey(p, hdict, p['KW_REF_RV'], value=rvref) # # # set the version # hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) # hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # # set the input files # hdict = spirouImage.AddKey(p, hdict, p['KW_CDBFLAT'], value=p['FLATFILE']) # hdict = spirouImage.AddKey(p, hdict, p['KW_REFFILE'], value=raw_infile) # # save drift values # p = spirouImage.WriteImage(p, driftfits, loc['DRIFT'], hdict) # ------------------------------------------------------------------ # print .tbl result # ------------------------------------------------------------------ # construct filename drifttbl = spirouConfig.Constants.DRIFTCCF_E2DS_TBL_FILE(p) drifttblname = os.path.split(drifttbl)[-1] # construct and write table columnnames = ['time', 'drift', 'drifterr'] columnformats = ['7.4f', '6.2f', '6.3f'] columnvalues = [loc['DELTATIME'], loc['MDRIFT'], loc['MERRDRIFT']] table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table wmsg = 'Average Drift saved in {0} Saved ' WLOG(p, '', wmsg.format(drifttblname)) spirouImage.WriteTable(p, table, drifttbl, fmt='ascii.rst') # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, e2dsfile=None, mask=None, rv=None, width=None, step=None): """ cal_CCF_E2DS_spirou.py main function, if arguments are None uses arguments from run time i.e.: cal_CCF_E2DS_spirou.py [night_directory] [E2DSfilename] [mask] [RV] [width] [step] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param e2dsfile: string, the E2DS file to use :param mask: string, the mask file to use (i.e. "UrNe.mas") :param rv: float, the target RV to use :param width: float, the CCF width to use :param step: float, the CCF step to use :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) # deal with arguments being None (i.e. get from sys.argv) pos = [0, 1, 2, 3, 4] fmt = [str, str, float, float, float] name = ['e2dsfile', 'ccf_mask', 'target_rv', 'ccf_width', 'ccf_step'] lname = ['input_file', 'CCF_mask', 'RV', 'CCF_width', 'CCF_step'] req = [True, True, True, False, False] call = [e2dsfile, mask, rv, width, step] call_priority = [True, True, True, True, True] # now get custom arguments customargs = spirouStartup.GetCustomFromRuntime(p, pos, fmt, name, req, call, call_priority, lname) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsfile='e2dsfile', mainfitsdir='reduced') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, e2dsfilename = spirouStartup.SingleFileSetup(p, filename=p['E2DSFILE']) # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Deal with optional run time arguments # ---------------------------------------------------------------------- # define default arguments (if ccf_width and ccf_step are not defined # in function call or run time arguments if 'ccf_width' not in p: p['CCF_WIDTH'] = p['IC_CCF_WIDTH'] if 'ccf_step' not in p: p['CCF_STEP'] = p['IC_CCF_STEP'] # ---------------------------------------------------------------------- # Read image file # ---------------------------------------------------------------------- # read the image data e2ds, hdr, nbo, nx = spirouImage.ReadData(p, e2dsfilename) # add to loc loc = ParamDict() loc['E2DS'] = e2ds loc['NUMBER_ORDERS'] = nbo loc.set_sources(['E2DS', 'number_orders'], __NAME__ + '/main()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hdr, name='exptime') # get gain p = spirouImage.GetGain(p, hdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hdr, name='acqtime', kind='julian') # get obj name p = spirouImage.ReadParam(p, hdr, 'KW_OBJNAME', name='OBJNAME', dtype=str) bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # ---------------------------------------------------------------------- # Earth Velocity calculation # ---------------------------------------------------------------------- if p['IC_IMAGE_TYPE'] == 'H4RG': p, loc = spirouImage.GetEarthVelocityCorrection(p, loc, hdr) # ---------------------------------------------------------------------- # Read wavelength solution # ---------------------------------------------------------------------- # log WLOG(p, '', 'Reading wavelength solution ') # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) param_ll, wave_ll, wavefile, wsource = wout # save to storage loc['PARAM_LL'], loc['WAVE_LL'], loc['WAVEFILE'], loc['WSOURCE'] = wout source = __NAME__ + '/main() + spirouTHORCA.GetWaveSolution()' loc.set_sources(['WAVE_LL', 'PARAM_LL', 'WAVEFILE', 'WSOURCE'], source) # ---------------------------------------------------------------------- # Read Flat file # ---------------------------------------------------------------------- # TODO We do not need to correct FLAT # log # WLOG(p, '', 'Reading Flat-Field ') # get flat # loc['FLAT'] = spirouImage.ReadFlatFile(p, hdr) # loc.set_source('FLAT', __NAME__ + '/main() + /spirouImage.ReadFlatFile') # get all values in flat that are zero to 1 # loc['FLAT'] = np.where(loc['FLAT'] == 0, 1.0, loc['FLAT']) # get blaze # p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hdr) p, blaze0 = spirouImage.ReadBlazeFile(p, hdr) # ---------------------------------------------------------------------- # Preliminary set up = no flat, no blaze # ---------------------------------------------------------------------- # reset flat to all ones # loc['FLAT'] = np.ones((nbo, nx)) # set blaze to all ones (if not bug in correlbin !!! # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((nbo, nx)) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_sources(['blaze'], __NAME__ + '/main()') # Modification of E2DS array with N.A.N if np.isnan(np.sum(e2ds)): WLOG(p, 'warning', 'NaN values found in e2ds, converting process') # First basic approach Replacing N.A.N by zeros # e2ds[np.isnan(e2ds)] = 0 # Second approach replacing N.A.N by the Adjusted Blaze e2dsb = e2ds / blaze0 for i in np.arange(len(e2ds)): with warnings.catch_warnings(record=True) as _: rap = np.mean(e2dsb[i][np.isfinite(e2dsb[i])]) if np.isnan(rap): rap = 0.0 e2ds[i] = np.where(np.isfinite(e2dsb[i]), e2ds[i], blaze0[i] * rap) # ---------------------------------------------------------------------- # correct extracted image for flat # ---------------------------------------------------------------------- # loc['E2DSFF'] = e2ds/loc['FLAT'] # loc['E2DSFF'] = e2ds*1. loc['E2DSFF'] = e2ds loc.set_source('E2DSFF', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Compute photon noise uncertainty for reference file # ---------------------------------------------------------------------- # set up the arguments for DeltaVrms2D dargs = [loc['E2DS'], loc['WAVE_LL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty # wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' # WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) wmsg = 'On fiber estimated RV uncertainty on spectrum is {0:.3f} m/s' WLOG(p, 'info', wmsg.format(wmeanref)) # TEST N.A.N # loc['E2DSFF'][20:22,2000:3000]=np.nan # e2ds[20:30,1000:3000]=np.nan # ---------------------------------------------------------------------- # Reference plots # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # start interactive session if needed sPlt.start_interactive_session(p) # plot FP spectral order sPlt.drift_plot_selected_wave_ref(p, loc, x=loc['WAVE_LL'], y=loc['E2DS']) # plot photon noise uncertainty sPlt.drift_plot_photon_uncertainty(p, loc) # ---------------------------------------------------------------------- # Get template RV (from ccf_mask) # ---------------------------------------------------------------------- # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # check and deal with mask in microns (should be in nm) if np.mean(loc['LL_MASK_CTR']) < 2.0: loc['LL_MASK_CTR'] *= 1000.0 loc['LL_MASK_D'] *= 1000.0 # ---------------------------------------------------------------------- # Do correlation # ---------------------------------------------------------------------- # calculate and fit the CCF loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Correlation stats # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.max(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=0) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # ---------------------------------------------------------------------- # set the source keys = [ 'average_ccf', 'maxcpp', 'rv', 'contrast', 'fwhm', 'ccf_res', 'ccf_fit' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('Correlation: C={0:.1f}[%] RV={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], loc['RV'], loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # TODO: Needs doing # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # add to qc header lists qc_values.append('None') qc_names.append('None') qc_logic.append('None') qc_pass.append(1) # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ---------------------------------------------------------------------- # archive ccf to table # ---------------------------------------------------------------------- # construct filename res_table_file = spirouConfig.Constants.CCF_TABLE_FILE(p) # log progress WLOG(p, '', 'Archiving CCF on file {0}'.format(res_table_file)) # define column names columns = ['order', 'maxcpp', 'nlines', 'contrast', 'RV', 'sig'] # define values for each column values = [ loc['ORDERS'], loc['CCF_MAX'] / loc['PIX_PASSED_ALL'], loc['TOT_LINE'], np.abs(100 * loc['CCF_ALL_RESULTS'][:, 0]), loc['CCF_ALL_RESULTS'][:, 1], loc['CCF_ALL_RESULTS'][:, 2] ] # define the format for each column formats = ['2.0f', '5.0f', '4.0f', '4.1f', '9.4f', '7.4f'] # construct astropy table from column names, values and formats table = spirouImage.MakeTable(p, columns, values, formats) # save table to file spirouImage.WriteTable(p, table, res_table_file, fmt='ascii') # ---------------------------------------------------------------------- # archive ccf to fits file # ---------------------------------------------------------------------- raw_infile = os.path.basename(p['E2DSFILE']) # construct folder and filename corfile, tag = spirouConfig.Constants.CCF_FITS_FILE(p) corfilename = os.path.split(corfile)[-1] # log that we are archiving the CCF on file WLOG(p, '', 'Archiving CCF on file {0}'.format(corfilename)) # get constants from p mask = p['CCF_MASK'] # if file exists remove it if os.path.exists(corfile): os.remove(corfile) # add the average ccf to the end of ccf data = np.vstack([loc['CCF'], loc['AVERAGE_CCF']]) # add drs keys hdict = spirouImage.CopyOriginalKeys(hdr) hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='file', values=p['E2DSFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_INCCFMASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_INRV'], value=p['TARGET_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_INWIDTH'], value=p['CCF_WIDTH']) hdict = spirouImage.AddKey(p, hdict, p['KW_INSTEP'], value=p['CCF_STEP']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add CCF keys hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CTYPE'], value='km/s') hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CRVAL'], value=loc['RV_CCF'][0]) # the rv step rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep) # add ccf stats hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RV'], value=loc['CCF_RES'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_RVC'], value=loc['RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_FWHM'], value=loc['FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_WMREF'], value=loc['WMEANREF']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CONTRAST'], value=loc['CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MAXCPP'], value=loc['MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_MASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_LINES'], value=np.nansum(loc['TOT_LINE'])) # add berv values hdict = spirouImage.AddKey(p, hdict, p['KW_BERV'], value=loc['BERV']) hdict = spirouImage.AddKey(p, hdict, p['KW_BJD'], value=loc['BJD']) hdict = spirouImage.AddKey(p, hdict, p['KW_BERV_MAX'], value=loc['BERV_MAX']) # write image and add header keys (via hdict) p = spirouImage.WriteImage(p, corfile, data, hdict) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return a copy of locally defined variables in the memory return dict(locals())
def main(night_name=None, fpfile=None, hcfiles=None): """ cal_WAVE_E2DS.py main function, if night_name and files are None uses arguments from run time i.e.: cal_DARK_spirou.py [night_directory] [fpfile] [hcfiles] :param night_name: string or None, the folder within data raw directory containing files (also reduced directory) i.e. /data/raw/20170710 would be "20170710" but /data/raw/AT5/20180409 would be "AT5/20180409" :param fpfile: string, or None, the FP file to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :param hcfiles: string, list or None, the list of HC files to use for arg_file_names and fitsfilename (if None assumes arg_file_names was set from run time) :return ll: dictionary, containing all the local variables defined in main """ # ---------------------------------------------------------------------- # Set up # ---------------------------------------------------------------------- # test files TC2 # night_name = 'AT5/AT5-12/2018-05-29_17-41-44/' # fpfile = '2279844a_fp_fp_pp_e2dsff_AB.fits' # hcfiles = ['2279845c_hc_pp_e2dsff_AB.fits'] # test files TC3 # night_name = 'TC3/AT5/AT5-12/2018-07-24_16-17-57/' # fpfile = '2294108a_pp_e2dsff_AB.fits' # hcfiles = ['2294115c_pp_e2dsff_AB.fits'] # night_name = 'TC3/AT5/AT5-12/2018-07-25_16-49-50/' # fpfile = '2294223a_pp_e2dsff_AB.fits' # hcfiles = ['2294230c_pp_e2dsff_AB.fits'] # get parameters from config files/run time args/load paths + calibdb p = spirouStartup.Begin(recipe=__NAME__) if hcfiles is None or fpfile is None: names, types = ['fpfile', 'hcfiles'], [str, str] customargs = spirouStartup.GetCustomFromRuntime(p, [0, 1], types, names, last_multi=True) else: customargs = dict(hcfiles=hcfiles, fpfile=fpfile) # get parameters from configuration files and run time arguments p = spirouStartup.LoadArguments(p, night_name, customargs=customargs, mainfitsdir='reduced', mainfitsfile='hcfiles') # ---------------------------------------------------------------------- # Construct reference filename and get fiber type # ---------------------------------------------------------------------- p, fpfitsfilename = spirouStartup.SingleFileSetup(p, filename=p['FPFILE']) fiber1 = str(p['FIBER']) p, hcfilenames = spirouStartup.MultiFileSetup(p, files=p['HCFILES']) fiber2 = str(p['FIBER']) # set the hcfilename to the first hcfilenames hcfitsfilename = hcfilenames[0] # ---------------------------------------------------------------------- # Once we have checked the e2dsfile we can load calibDB # ---------------------------------------------------------------------- # as we have custom arguments need to load the calibration database p = spirouStartup.LoadCalibDB(p) # ---------------------------------------------------------------------- # Have to check that the fibers match # ---------------------------------------------------------------------- if fiber1 == fiber2: p['FIBER'] = fiber1 fsource = __NAME__ + '/main() & spirouStartup.GetFiberType()' p.set_source('FIBER', fsource) else: emsg = 'Fiber not matching for {0} and {1}, should be the same' eargs = [hcfitsfilename, fpfitsfilename] WLOG(p, 'error', emsg.format(*eargs)) # set the fiber type p['FIB_TYP'] = [p['FIBER']] p.set_source('FIB_TYP', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Read FP and HC files # ---------------------------------------------------------------------- # read and combine all HC files except the first (fpfitsfilename) rargs = [p, 'add', hcfitsfilename, hcfilenames[1:]] p, hcdata, hchdr = spirouImage.ReadImageAndCombine(*rargs) # read first file (fpfitsfilename) fpdata, fphdr, _, _ = spirouImage.ReadImage(p, fpfitsfilename) # TODO: ------------------------------------------------------------ # TODO remove to test NaNs # TODO: ------------------------------------------------------------ # hcmask = np.isfinite(hcdata) # fpmask = np.isfinite(fpdata) # hcdata[~hcmask] = 0.0 # fpdata[~fpmask] = 0.0 # TODO: ------------------------------------------------------------ # add data and hdr to loc loc = ParamDict() loc['HCDATA'], loc['HCHDR'] = hcdata, hchdr loc['FPDATA'], loc['FPHDR'] = fpdata, fphdr # set the source sources = ['HCDATA', 'HCHDR'] loc.set_sources(sources, 'spirouImage.ReadImageAndCombine()') sources = ['FPDATA', 'FPHDR'] loc.set_sources(sources, 'spirouImage.ReadImage()') # ---------------------------------------------------------------------- # Get basic image properties for reference file # ---------------------------------------------------------------------- # get sig det value p = spirouImage.GetSigdet(p, hchdr, name='sigdet') # get exposure time p = spirouImage.GetExpTime(p, hchdr, name='exptime') # get gain p = spirouImage.GetGain(p, hchdr, name='gain') # get acquisition time p = spirouImage.GetAcqTime(p, hchdr, name='acqtime', kind='julian') bjdref = p['ACQTIME'] # set sigdet and conad keywords (sigdet is changed later) p['KW_CCD_SIGDET'][1] = p['SIGDET'] p['KW_CCD_CONAD'][1] = p['GAIN'] # get lamp parameters p = spirouTHORCA.GetLampParams(p, hchdr) # get number of orders # we always get fibre A number because AB is doubled in constants file loc['NBO'] = p['QC_LOC_NBO_FPALL']['A'] loc.set_source('NBO', __NAME__ + '.main()') # get number of pixels in x from hcdata size loc['NBPIX'] = loc['HCDATA'].shape[1] loc.set_source('NBPIX', __NAME__ + '.main()') # ---------------------------------------------------------------------- # Read blaze # ---------------------------------------------------------------------- # get tilts p, loc['BLAZE'] = spirouImage.ReadBlazeFile(p, hchdr) loc.set_source('BLAZE', __NAME__ + '/main() + /spirouImage.ReadBlazeFile') # make copy of blaze (as it's overwritten later) loc['BLAZE2'] = np.copy(loc['BLAZE']) # ---------------------------------------------------------------------- # Read wave solution # ---------------------------------------------------------------------- # wavelength file; we will use the polynomial terms in its header, # NOT the pixel values that would need to be interpolated # set source of wave file wsource = __NAME__ + '/main() + /spirouImage.GetWaveSolution' # Force A and B to AB solution if p['FIBER'] in ['A', 'B']: wave_fiber = 'AB' else: wave_fiber = p['FIBER'] # get wave image wout = spirouImage.GetWaveSolution(p, hdr=hchdr, return_wavemap=True, return_filename=True, fiber=wave_fiber) loc['WAVEPARAMS'], loc['WAVE_INIT'], loc['WAVEFILE'], loc['WSOURCE'] = wout loc.set_sources(['WAVE_INIT', 'WAVEFILE', 'WAVEPARAMS', 'WSOURCE'], wsource) poly_wave_sol = loc['WAVEPARAMS'] # ---------------------------------------------------------------------- # Check that wave parameters are consistent with "ic_ll_degr_fit" # ---------------------------------------------------------------------- loc = spirouImage.CheckWaveSolConsistency(p, loc) # ---------------------------------------------------------------------- # Read UNe solution # ---------------------------------------------------------------------- wave_u_ne, amp_u_ne = spirouImage.ReadLineList(p) loc['LL_LINE'], loc['AMPL_LINE'] = wave_u_ne, amp_u_ne source = __NAME__ + '.main() + spirouImage.ReadLineList()' loc.set_sources(['ll_line', 'ampl_line'], source) # ---------------------------------------------------------------------- # Generate wave map from wave solution # ---------------------------------------------------------------------- loc = spirouWAVE.generate_wave_map(p, loc) # ---------------------------------------------------------------------- # Find Gaussian Peaks in HC spectrum # ---------------------------------------------------------------------- loc = spirouWAVE.find_hc_gauss_peaks(p, loc) # ---------------------------------------------------------------------- # Start plotting session # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # start interactive plot sPlt.start_interactive_session(p) # ---------------------------------------------------------------------- # Fit Gaussian peaks (in triplets) to # ---------------------------------------------------------------------- loc = spirouWAVE.fit_gaussian_triplets(p, loc) # ---------------------------------------------------------------------- # Generate Resolution map and line profiles # ---------------------------------------------------------------------- # log progress wmsg = 'Generating resolution map and ' # generate resolution map loc = spirouWAVE.generate_resolution_map(p, loc) # map line profile map if p['DRS_PLOT'] > 0: sPlt.wave_ea_plot_line_profiles(p, loc) # ---------------------------------------------------------------------- # End plotting session # ---------------------------------------------------------------------- # end interactive session if p['DRS_PLOT'] > 0: sPlt.end_interactive_session(p) # ---------------------------------------------------------------------- # Set up all_lines storage # ---------------------------------------------------------------------- # initialise up all_lines storage all_lines_1 = [] # get parameters from p n_ord_start = p['IC_HC_N_ORD_START_2'] n_ord_final = p['IC_HC_N_ORD_FINAL_2'] pixel_shift_inter = p['PIXEL_SHIFT_INTER'] pixel_shift_slope = p['PIXEL_SHIFT_SLOPE'] # get values from loc xgau = np.array(loc['XGAU_T']) dv = np.array(loc['DV_T']) fit_per_order = np.array(loc['POLY_WAVE_SOL']) ew = np.array(loc['EW_T']) peak = np.array(loc['PEAK_T']) amp_catalog = np.array(loc['AMP_CATALOG']) wave_catalog = np.array(loc['WAVE_CATALOG']) ord_t = np.array(loc['ORD_T']) # loop through orders for iord in range(n_ord_start, n_ord_final): # keep relevant lines # -> right order # -> finite dv gg = (ord_t == iord) & (np.isfinite(dv)) nlines = np.nansum(gg) # put lines into ALL_LINES structure # reminder: # gparams[0] = output wavelengths # gparams[1] = output sigma(gauss fit width) # gparams[2] = output amplitude(gauss fit) # gparams[3] = difference in input / output wavelength # gparams[4] = input amplitudes # gparams[5] = output pixel positions # gparams[6] = output pixel sigma width (gauss fit width in pixels) # gparams[7] = output weights for the pixel position chebval = np.polynomial.chebyshev.chebval # dummy array for weights test = np.ones(np.shape(xgau[gg]), 'd') * 1e4 # get the final wavelength value for each peak in order output_wave_1 = np.polyval(fit_per_order[iord][::-1], xgau[gg]) # output_wave_1 = chebval(xgau[gg], fit_per_order[iord]) # convert the pixel equivalent width to wavelength units xgau_ew_ini = xgau[gg] - ew[gg] / 2 xgau_ew_fin = xgau[gg] + ew[gg] / 2 ew_ll_ini = np.polyval(fit_per_order[iord, :], xgau_ew_ini) ew_ll_fin = np.polyval(fit_per_order[iord, :], xgau_ew_fin) # ew_ll_ini = chebval(xgau_ew_ini, fit_per_order[iord]) # ew_ll_fin = chebval(xgau_ew_fin, fit_per_order[iord]) ew_ll = ew_ll_fin - ew_ll_ini # put all lines in the order into array gau_params = np.column_stack( (output_wave_1, ew_ll, peak[gg], wave_catalog[gg] - output_wave_1, amp_catalog[gg], xgau[gg], ew[gg], test)) # append the array for the order into a list all_lines_1.append(gau_params) # save dv in km/s and auxiliary order number # res_1 = np.concatenate((res_1,2.997e5*(input_wave - output_wave_1)/ # output_wave_1)) # ord_save = np.concatenate((ord_save, test*iord)) # add to loc loc['ALL_LINES_1'] = all_lines_1 loc['LL_PARAM_1'] = np.array(fit_per_order) loc['LL_OUT_1'] = np.array(loc['WAVE_MAP2']) loc.set_sources(['ALL_LINES_1', 'LL_PARAM_1'], __NAME__ + '/main()') # For compatibility w/already defined functions, I need to save # here all_lines_2 all_lines_2 = list(all_lines_1) loc['ALL_LINES_2'] = all_lines_2 # loc['LL_PARAM_2'] = np.fliplr(fit_per_order) # loc['LL_OUT_2'] = np.array(loc['WAVE_MAP2']) # loc.set_sources(['ALL_LINES_2', 'LL_PARAM_2'], __NAME__ + '/main()') # ------------------------------------------------------------------ # Littrow test # ------------------------------------------------------------------ start = p['IC_LITTROW_ORDER_INIT_1'] end = p['IC_LITTROW_ORDER_FINAL_1'] # calculate echelle orders o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # reset Littrow fit degree p['IC_LITTROW_FIT_DEG_1'] = 7 # Do Littrow check ckwargs = dict(ll=loc['LL_OUT_1'][start:end, :], iteration=1, log=True) loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs) # Plot wave solution littrow check if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_check_plot(p, loc, iteration=1) # ------------------------------------------------------------------ # extrapolate Littrow solution # ------------------------------------------------------------------ ekwargs = dict(ll=loc['LL_OUT_1'], iteration=1) loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs) # ------------------------------------------------------------------ # Plot littrow solution # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_extrap_plot(p, loc, iteration=1) # ------------------------------------------------------------------ # Incorporate FP into solution # ------------------------------------------------------------------ # Copy LL_OUT_1 and LL_PARAM_1 into new constants (for FP integration) loc['LITTROW_EXTRAP_SOL_1'] = np.array(loc['LL_OUT_1']) loc['LITTROW_EXTRAP_PARAM_1'] = np.array(loc['LL_PARAM_1']) # only use FP if switched on in constants file if p['IC_WAVE_USE_FP']: # ------------------------------------------------------------------ # Find FP lines # ------------------------------------------------------------------ # print message to screen wmsg = 'Identification of lines in reference file: {0}' WLOG(p, '', wmsg.format(fpfile)) # ------------------------------------------------------------------ # Get the FP solution # ------------------------------------------------------------------ loc = spirouTHORCA.FPWaveSolutionNew(p, loc) # ------------------------------------------------------------------ # FP solution plots # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # Plot the FP extracted spectrum against wavelength solution sPlt.wave_plot_final_fp_order(p, loc, iteration=1) # Plot the measured FP cavity width offset against line number sPlt.wave_local_width_offset_plot(p, loc) # Plot the FP line wavelength residuals sPlt.wave_fp_wavelength_residuals(p, loc) # ------------------------------------------------------------------ # Create new wavelength solution # ------------------------------------------------------------------ # TODO: Melissa fault - fix later p['IC_HC_N_ORD_START_2'] = min(p['IC_HC_N_ORD_START_2'], p['IC_FP_N_ORD_START']) p['IC_HC_N_ORD_FINAL_2'] = max(p['IC_HC_N_ORD_FINAL_2'], p['IC_FP_N_ORD_FINAL']) start = p['IC_HC_N_ORD_START_2'] end = p['IC_HC_N_ORD_FINAL_2'] # recalculate echelle orders for Fit1DSolution o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # select the orders to fit lls = loc['LITTROW_EXTRAP_SOL_1'][start:end] loc = spirouTHORCA.Fit1DSolution(p, loc, lls, iteration=2) # from here, LL_OUT_2 wil be 0-47 # ------------------------------------------------------------------ # Repeat Littrow test # ------------------------------------------------------------------ start = p['IC_LITTROW_ORDER_INIT_2'] end = p['IC_LITTROW_ORDER_FINAL_2'] # recalculate echelle orders for Littrow check o_orders = np.arange(start, end) echelle_order = p['IC_HC_T_ORDER_START'] - o_orders loc['ECHELLE_ORDERS'] = echelle_order loc.set_source('ECHELLE_ORDERS', __NAME__ + '/main()') # Do Littrow check ckwargs = dict(ll=loc['LL_OUT_2'][start:end, :], iteration=2, log=True) loc = spirouTHORCA.CalcLittrowSolution(p, loc, **ckwargs) # Plot wave solution littrow check if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_check_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # extrapolate Littrow solution # ------------------------------------------------------------------ ekwargs = dict(ll=loc['LL_OUT_2'], iteration=2) loc = spirouTHORCA.ExtrapolateLittrowSolution(p, loc, **ekwargs) # ------------------------------------------------------------------ # Plot littrow solution # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: # plot littrow x pixels against fitted wavelength solution sPlt.wave_littrow_extrap_plot(p, loc, iteration=2) # ------------------------------------------------------------------ # Join 0-47 and 47-49 solutions # ------------------------------------------------------------------ loc = spirouTHORCA.JoinOrders(p, loc) # ------------------------------------------------------------------ # Plot single order, wavelength-calibrated, with found lines # ------------------------------------------------------------------ if p['DRS_PLOT'] > 0: sPlt.wave_ea_plot_single_order(p, loc) # ---------------------------------------------------------------------- # Do correlation on FP spectra # ---------------------------------------------------------------------- # ------------------------------------------------------------------ # Compute photon noise uncertainty for FP # ------------------------------------------------------------------ # set up the arguments for DeltaVrms2D dargs = [loc['FPDATA'], loc['LL_FINAL']] dkwargs = dict(sigdet=p['IC_DRIFT_NOISE'], size=p['IC_DRIFT_BOXSIZE'], threshold=p['IC_DRIFT_MAXFLUX']) # run DeltaVrms2D dvrmsref, wmeanref = spirouRV.DeltaVrms2D(*dargs, **dkwargs) # save to loc loc['DVRMSREF'], loc['WMEANREF'] = dvrmsref, wmeanref loc.set_sources(['dvrmsref', 'wmeanref'], __NAME__ + '/main()()') # log the estimated RV uncertainty wmsg = 'On fiber {0} estimated RV uncertainty on spectrum is {1:.3f} m/s' WLOG(p, 'info', wmsg.format(p['FIBER'], wmeanref)) # Use CCF Mask function with drift constants p['CCF_MASK'] = p['DRIFT_CCF_MASK'] p['TARGET_RV'] = p['DRIFT_TARGET_RV'] p['CCF_WIDTH'] = p['DRIFT_CCF_WIDTH'] p['CCF_STEP'] = p['DRIFT_CCF_STEP'] p['RVMIN'] = p['TARGET_RV'] - p['CCF_WIDTH'] p['RVMAX'] = p['TARGET_RV'] + p['CCF_WIDTH'] + p['CCF_STEP'] # get the CCF mask from file (check location of mask) loc = spirouRV.GetCCFMask(p, loc) # TODO Check why Blaze makes bugs in correlbin loc['BLAZE'] = np.ones((loc['NBO'], loc['NBPIX'])) # set sources # loc.set_sources(['flat', 'blaze'], __NAME__ + '/main()') loc.set_source('blaze', __NAME__ + '/main()') # ---------------------------------------------------------------------- # Do correlation on FP # ---------------------------------------------------------------------- # calculate and fit the CCF loc['E2DSFF'] = np.array(loc['FPDATA']) loc.set_source('E2DSFF', __NAME__ + '/main()') p['CCF_FIT_TYPE'] = 1 loc['BERV'] = 0.0 loc['BERV_MAX'] = 0.0 loc['BJD'] = 0.0 # run the RV coravelation function with these parameters loc['WAVE_LL'] = np.array(loc['LL_FINAL']) loc['PARAM_LL'] = np.array(loc['LL_PARAM_FINAL']) loc = spirouRV.Coravelation(p, loc) # ---------------------------------------------------------------------- # Update the Correlation stats with values using fiber C (FP) drift # ---------------------------------------------------------------------- # get the maximum number of orders to use nbmax = p['CCF_NUM_ORDERS_MAX'] # get the average ccf loc['AVERAGE_CCF'] = np.nansum(loc['CCF'][:nbmax], axis=0) # normalize the average ccf normalized_ccf = loc['AVERAGE_CCF'] / np.nanmax(loc['AVERAGE_CCF']) # get the fit for the normalized average ccf ccf_res, ccf_fit = spirouRV.FitCCF(p, loc['RV_CCF'], normalized_ccf, fit_type=1) loc['CCF_RES'] = ccf_res loc['CCF_FIT'] = ccf_fit # get the max cpp loc['MAXCPP'] = np.nansum(loc['CCF_MAX']) / np.nansum( loc['PIX_PASSED_ALL']) # get the RV value from the normalised average ccf fit center location loc['RV'] = float(ccf_res[1]) # get the contrast (ccf fit amplitude) loc['CONTRAST'] = np.abs(100 * ccf_res[0]) # get the FWHM value loc['FWHM'] = ccf_res[2] * spirouCore.spirouMath.fwhm() # set the source keys = [ 'AVERAGE_CCF', 'MAXCPP', 'RV', 'CONTRAST', 'FWHM', 'CCF_RES', 'CCF_FIT' ] loc.set_sources(keys, __NAME__ + '/main()') # ---------------------------------------------------------------------- # log the stats wmsg = ('FP Correlation: C={0:.1f}[%] DRIFT={1:.5f}[km/s] ' 'FWHM={2:.4f}[km/s] maxcpp={3:.1f}') wargs = [loc['CONTRAST'], float(ccf_res[1]), loc['FWHM'], loc['MAXCPP']] WLOG(p, 'info', wmsg.format(*wargs)) # ---------------------------------------------------------------------- # rv ccf plot # ---------------------------------------------------------------------- if p['DRS_PLOT'] > 0: # Plot rv vs ccf (and rv vs ccf_fit) p['OBJNAME'] = 'FP' sPlt.ccf_rv_ccf_plot(p, loc['RV_CCF'], normalized_ccf, ccf_fit) # TODO : Add QC of the FP CCF # ---------------------------------------------------------------------- # Quality control # ---------------------------------------------------------------------- # get parameters ffrom p p['QC_RMS_LITTROW_MAX'] = p['QC_HC_RMS_LITTROW_MAX'] p['QC_DEV_LITTROW_MAX'] = p['QC_HC_DEV_LITTROW_MAX'] # set passed variable and fail message list passed, fail_msg = True, [] qc_values, qc_names, qc_logic, qc_pass = [], [], [], [] # ---------------------------------------------------------------------- # quality control on sigma clip (sig1 > qc_hc_wave_sigma_max if loc['SIG1'] > p['QC_HC_WAVE_SIGMA_MAX']: fmsg = 'Sigma too high ({0:.5f} > {1:.5f})' fail_msg.append(fmsg.format(loc['SIG1'], p['QC_HC_WAVE_SIGMA_MAX'])) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['SIG1']) qc_names.append('SIG1') qc_logic.append('SIG1 > {0:.2f}'.format(p['QC_HC_WAVE_SIGMA_MAX'])) # ---------------------------------------------------------------------- # check the difference between consecutive orders is always positive # get the differences wave_diff = loc['LL_FINAL'][1:] - loc['LL_FINAL'][:-1] if np.min(wave_diff) < 0: fmsg = 'Negative wavelength difference between orders' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.min(wave_diff)) qc_names.append('MIN WAVE DIFF') qc_logic.append('MIN WAVE DIFF < 0') # ---------------------------------------------------------------------- # check for infinites and NaNs in mean residuals from fit if ~np.isfinite(loc['X_MEAN_2']): # add failed message to the fail message list fmsg = 'NaN or Inf in X_MEAN_2' fail_msg.append(fmsg) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(loc['X_MEAN_2']) qc_names.append('X_MEAN_2') qc_logic.append('X_MEAN_2 not finite') # ---------------------------------------------------------------------- # iterate through Littrow test cut values lit_it = 2 # checks every other value # TODO: This QC check (or set of QC checks needs re-writing it is # TODO: nearly impossible to understand for x_it in range(1, len(loc['X_CUT_POINTS_' + str(lit_it)]), 2): # get x cut point x_cut_point = loc['X_CUT_POINTS_' + str(lit_it)][x_it] # get the sigma for this cut point sig_littrow = loc['LITTROW_SIG_' + str(lit_it)][x_it] # get the abs min and max dev littrow values min_littrow = abs(loc['LITTROW_MINDEV_' + str(lit_it)][x_it]) max_littrow = abs(loc['LITTROW_MAXDEV_' + str(lit_it)][x_it]) # get the corresponding order min_littrow_ord = loc['LITTROW_MINDEVORD_' + str(lit_it)][x_it] max_littrow_ord = loc['LITTROW_MAXDEVORD_' + str(lit_it)][x_it] # check if sig littrow is above maximum rms_littrow_max = p['QC_RMS_LITTROW_MAX'] dev_littrow_max = p['QC_DEV_LITTROW_MAX'] if sig_littrow > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f})') fargs = [x_cut_point, sig_littrow, rms_littrow_max] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) else: qc_pass.append(1) # add to qc header lists qc_values.append(sig_littrow) qc_names.append('sig_littrow') qc_logic.append('sig_littrow > {0:.2f}'.format(rms_littrow_max)) # ---------------------------------------------------------------------- # check if min/max littrow is out of bounds if np.max([max_littrow, min_littrow]) > dev_littrow_max: fmsg = ('Littrow test (x={0}) failed (min|max dev = ' '{1:.2f}|{2:.2f} > {3:.2f} for order {4}|{5})') fargs = [ x_cut_point, min_littrow, max_littrow, dev_littrow_max, min_littrow_ord, max_littrow_ord ] fail_msg.append(fmsg.format(*fargs)) passed = False qc_pass.append(0) # TODO: Should this be the QC header values? # TODO: it does not change the outcome of QC (i.e. passed=False) # TODO: So what is the point? # if sig was out of bounds, recalculate if sig_littrow > rms_littrow_max: # conditions check1 = min_littrow > dev_littrow_max check2 = max_littrow > dev_littrow_max # get the residuals respix = loc['LITTROW_YY_' + str(lit_it)][x_it] # check if both are out of bounds if check1 and check2: # remove respective orders worst_order = (min_littrow_ord, max_littrow_ord) respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if min is out of bounds elif check1: # remove respective order worst_order = min_littrow_ord respix_2 = np.delete(respix, worst_order) redo_sigma = True # check if max is out of bounds elif check2: # remove respective order worst_order = max_littrow_ord respix_2 = np.delete(respix, max_littrow_ord) redo_sigma = True # else do not recalculate sigma else: redo_sigma, respix_2, worst_order = False, None, None wmsg = 'No outlying orders, sig littrow not recalculated' fail_msg.append(wmsg.format()) # if outlying order, recalculate stats if redo_sigma: mean = np.nansum(respix_2) / len(respix_2) mean2 = np.nansum(respix_2**2) / len(respix_2) rms = np.sqrt(mean2 - mean**2) if rms > rms_littrow_max: fmsg = ('Littrow test (x={0}) failed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] fail_msg.append(fmsg.format(*fargs)) else: wargs = [ x_cut_point, rms, rms_littrow_max, worst_order ] wmsg = ('Littrow test (x={0}) passed (sig littrow = ' '{1:.2f} > {2:.2f} removing order {3})') fail_msg.append(wmsg.format(*wargs)) else: qc_pass.append(1) # add to qc header lists qc_values.append(np.max([max_littrow, min_littrow])) qc_names.append('max or min littrow') qc_logic.append('max or min littrow > {0:.2f}' ''.format(dev_littrow_max)) # finally log the failed messages and set QC = 1 if we pass the # quality control QC = 0 if we fail quality control if passed: WLOG(p, 'info', 'QUALITY CONTROL SUCCESSFUL - Well Done -') p['QC'] = 1 p.set_source('QC', __NAME__ + '/main()') else: for farg in fail_msg: wmsg = 'QUALITY CONTROL FAILED: {0}' WLOG(p, 'warning', wmsg.format(farg)) p['QC'] = 0 p.set_source('QC', __NAME__ + '/main()') # store in qc_params qc_params = [qc_names, qc_values, qc_logic, qc_pass] # ------------------------------------------------------------------ # archive result in e2ds spectra # ------------------------------------------------------------------ # get raw input file name(s) raw_infiles1 = [] for hcfile in p['HCFILES']: raw_infiles1.append(os.path.basename(hcfile)) raw_infile2 = os.path.basename(p['FPFILE']) # get wave filename wavefits, tag1 = spirouConfig.Constants.WAVE_FILE_EA_2(p) wavefitsname = os.path.split(wavefits)[-1] # log progress wargs = [p['FIBER'], wavefits] wmsg = 'Write wavelength solution for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # write solution to fitsfilename header # copy original keys hdict = spirouImage.CopyOriginalKeys(loc['HCHDR']) # add version number hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_PID'], value=p['PID']) # set the input files hdict = spirouImage.AddKey(p, hdict, p['KW_CDBBLAZE'], value=p['BLAZFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_CDBWAVE'], value=loc['WAVEFILE']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVESOURCE'], value=loc['WSOURCE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE1'], dim1name='fpfile', values=p['FPFILE']) hdict = spirouImage.AddKey1DList(p, hdict, p['KW_INFILE2'], dim1name='hcfile', values=p['HCFILES']) # add qc parameters hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_QC'], value=p['QC']) hdict = spirouImage.AddQCKeys(p, hdict, qc_params) # add wave solution date hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME1'], value=p['MAX_TIME_HUMAN']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_TIME2'], value=p['MAX_TIME_UNIX']) hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_CODE'], value=__NAME__) # add number of orders hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_ORD_N'], value=loc['LL_PARAM_FINAL'].shape[0]) # add degree of fit hdict = spirouImage.AddKey(p, hdict, p['KW_WAVE_LL_DEG'], value=loc['LL_PARAM_FINAL'].shape[1] - 1) # add wave solution hdict = spirouImage.AddKey2DList(p, hdict, p['KW_WAVE_PARAM'], values=loc['LL_PARAM_FINAL']) # add FP CCF drift # target RV and width hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_TARG_RV'], value=p['TARGET_RV']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_WIDTH'], value=p['CCF_WIDTH']) # the rv step # rvstep = np.abs(loc['RV_CCF'][0] - loc['RV_CCF'][1]) # hdict = spirouImage.AddKey(p, hdict, p['KW_CCF_CDELT'], value=rvstep) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_STEP'], value=p['CCF_STEP']) # add ccf stats hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_DRIFT'], value=loc['CCF_RES'][1]) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_FWHM'], value=loc['FWHM']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_CONTRAST'], value=loc['CONTRAST']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MAXCPP'], value=loc['MAXCPP']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_MASK'], value=p['CCF_MASK']) hdict = spirouImage.AddKey(p, hdict, p['KW_WFP_LINES'], value=np.nansum(loc['TOT_LINE'])) # write the wave "spectrum" hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag1) p = spirouImage.WriteImage(p, wavefits, loc['LL_FINAL'], hdict) # get filename for E2DS calibDB copy of FITSFILENAME e2dscopy_filename = spirouConfig.Constants.WAVE_E2DS_COPY(p)[0] wargs = [p['FIBER'], os.path.split(e2dscopy_filename)[-1]] wmsg = 'Write reference E2DS spectra for Fiber {0} in {1}' WLOG(p, '', wmsg.format(*wargs)) # make a copy of the E2DS file for the calibBD p = spirouImage.WriteImage(p, e2dscopy_filename, loc['HCDATA'], hdict) # only copy over if QC passed if p['QC']: # loop around hc files and update header with for hcfile in p['HCFILES']: raw_infilepath1 = os.path.join(p['ARG_FILE_DIR'], hcfile) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath1) # update fp file raw_infilepath2 = os.path.join(p['ARG_FILE_DIR'], raw_infile2) p = spirouImage.UpdateWaveSolution(p, loc, raw_infilepath2) # ------------------------------------------------------------------ # Save to result table # ------------------------------------------------------------------ # calculate stats for table final_mean = 1000 * loc['X_MEAN_2'] final_var = 1000 * loc['X_VAR_2'] num_lines = int(np.nansum(loc['X_ITER_2'][:, 2])) # loc['X_ITER_2'] err = 1000 * np.sqrt(loc['X_VAR_2'] / num_lines) sig_littrow = 1000 * np.array(loc['LITTROW_SIG_' + str(lit_it)]) # construct filename wavetbl = spirouConfig.Constants.WAVE_TBL_FILE_EA(p) wavetblname = os.path.basename(wavetbl) # construct and write table columnnames = [ 'night_name', 'file_name', 'fiber', 'mean', 'rms', 'N_lines', 'err', 'rms_L500', 'rms_L1000', 'rms_L1500', 'rms_L2000', 'rms_L2500', 'rms_L3000', 'rms_L3500' ] columnformats = [ '{:20s}', '{:30s}', '{:3s}', '{:7.4f}', '{:6.2f}', '{:3d}', '{:6.3f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}', '{:6.2f}' ] columnvalues = [[p['ARG_NIGHT_NAME']], [p['ARG_FILE_NAMES'][0]], [p['FIBER']], [final_mean], [final_var], [num_lines], [err], [sig_littrow[0]], [sig_littrow[1]], [sig_littrow[2]], [sig_littrow[3]], [sig_littrow[4]], [sig_littrow[5]], [sig_littrow[6]]] # make table table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # merge table wmsg = 'Global result summary saved in {0}' WLOG(p, '', wmsg.format(wavetblname)) spirouImage.MergeTable(p, table, wavetbl, fmt='ascii.rst') # ---------------------------------------------------------------------- # Save resolution and line profiles to file # ---------------------------------------------------------------------- raw_infile = os.path.basename(p['FITSFILENAME']) # get wave filename resfits, tag3 = spirouConfig.Constants.WAVE_RES_FILE_EA(p) resfitsname = os.path.basename(resfits) WLOG(p, '', 'Saving wave resmap to {0}'.format(resfitsname)) # make a copy of the E2DS file for the calibBD # set the version hdict = spirouImage.AddKey(p, hdict, p['KW_VERSION']) hdict = spirouImage.AddKey(p, hdict, p['KW_DRS_DATE'], value=p['DRS_DATE']) hdict = spirouImage.AddKey(p, hdict, p['KW_DATE_NOW'], value=p['DATE_NOW']) hdict = spirouImage.AddKey(p, hdict, p['KW_OUTPUT'], value=tag3) # get res data in correct format resdata, hdicts = spirouTHORCA.GenerateResFiles(p, loc, hdict) # save to file p = spirouImage.WriteImageMulti(p, resfits, resdata, hdicts=hdicts) # ------------------------------------------------------------------ # Save line list table file # ------------------------------------------------------------------ # construct filename # TODO proper column values wavelltbl = spirouConfig.Constants.WAVE_LINE_FILE_EA(p) wavelltblname = os.path.split(wavelltbl)[-1] # construct and write table columnnames = ['order', 'll', 'dv', 'w', 'xi', 'xo', 'dvdx'] columnformats = [ '{:.0f}', '{:12.4f}', '{:13.5f}', '{:12.4f}', '{:12.4f}', '{:12.4f}', '{:8.4f}' ] columnvalues = [] # construct column values (flatten over orders) for it in range(len(loc['X_DETAILS_2'])): for jt in range(len(loc['X_DETAILS_2'][it][0])): row = [ float(it), loc['X_DETAILS_2'][it][0][jt], loc['LL_DETAILS_2'][it][0][jt], loc['X_DETAILS_2'][it][3][jt], loc['X_DETAILS_2'][it][1][jt], loc['X_DETAILS_2'][it][2][jt], loc['SCALE_2'][it][jt] ] columnvalues.append(row) # log saving wmsg = 'List of lines used saved in {0}' WLOG(p, '', wmsg.format(wavelltblname)) # make table columnvalues = np.array(columnvalues).T table = spirouImage.MakeTable(p, columns=columnnames, values=columnvalues, formats=columnformats) # write table spirouImage.WriteTable(p, table, wavelltbl, fmt='ascii.rst') # ------------------------------------------------------------------ # Move to calibDB and update calibDB # ------------------------------------------------------------------ if p['QC']: # set the wave key keydb = 'WAVE_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, wavefits) # update the master calib DB file with new key spirouDB.UpdateCalibMaster(p, keydb, wavefitsname, loc['HCHDR']) # set the hcref key keydb = 'HCREF_{0}'.format(p['FIBER']) # copy wave file to calibDB folder spirouDB.PutCalibFile(p, e2dscopy_filename) # update the master calib DB file with new key e2dscopyfits = os.path.split(e2dscopy_filename)[-1] spirouDB.UpdateCalibMaster(p, keydb, e2dscopyfits, loc['HCHDR']) # ---------------------------------------------------------------------- # End Message # ---------------------------------------------------------------------- p = spirouStartup.End(p) # return p and loc return dict(locals())