예제 #1
0
def TrainTestFull(X, y, Names, TestName, lons, lats, lons1, lats1, area_flat,
                  plot_dir):
    (X_train, X_test, y_train, y_test, names_train,
     names_test) = split_set(X, y, Names, TestName)
    # Train
    (m, kern) = TrainModel(X_train, y_train)
    # Predict
    y_pred, cov = TestModel(m, X_test, y_test)
    # Plot
    PlotMap(y_test, y_pred, lons, lats, names_train, names_test, plot_dir,
            area_flat)
    regions_all = ['Global'] + list(RegionsList)
    print(y_pred.shape)
    for v in range(len(TestName)):
        Validation(y_test[v:v + 1, ],
                   y_pred[v:v + 1, :],
                   cov[v:v + 1, :],
                   lons,
                   lats,
                   lons1,
                   lats1,
                   names_train,
                   names_test,
                   plot_dir + TestName[v] + '_',
                   area_flat,
                   metric_regions=regions_all)
    Save(names_train, names_test, X_train, X_test, y_train, y_test, y_pred,
         lons, lats, lons1, lats1, area_flat, m, kern,
         plot_dir + TestName[0] + '_')
예제 #2
0
def TrainTestPCA(X,
                 y,
                 Names,
                 TestName,
                 lons,
                 lats,
                 lons1,
                 lats1,
                 area_flat,
                 plot_dir,
                 n_comp=None,
                 pca_inputs=True,
                 pca_outputs=True):
    (X_train, X_test, y_train, y_test, names_train,
     names_test) = split_set(X, y, Names, TestName)
    # PCA
    if pca_inputs is True:
        X_PCA = PCA(n_comp).fit(X_train)
        X_trans = X_PCA.transform(X_train)
        X_test_trans = X_PCA.transform(X_test)
    else:
        X_trans = X_train
        X_test_trans = X_test
    if pca_outputs is True:
        y_PCA = PCA(n_comp).fit(y_train)
        y_trans = y_PCA.transform(y_train)
        y_test_trans = y_PCA.transform(y_test)
    else:
        y_trans = y_train
        y_test_trans = y_test
    # Train
    (m, kern) = TrainModel(X_trans, y_trans)
    y_pred, cov = TestModel(m, X_test_trans, y_test_trans)
    # Inverse PC
    if pca_outputs is True:
        y_pred_full = y_PCA.inverse_transform(y_pred)
        cov = y_PCA.inverse_transform(cov)
    else:
        y_pred_full = y_pred
    # Plot
    regions_all = ['Global'] + list(RegionsList)

    PlotMap(y_test, y_pred_full, lons, lats, names_train, names_test, plot_dir,
            area_flat)
    Validation(y_test,
               y_pred_full,
               cov,
               lons,
               lats,
               lons1,
               lats1,
               names_train,
               names_test,
               plot_dir + TestName[0] + '_',
               area_flat,
               metric_regions=regions_all)
    Save(names_train, names_test, X_train, X_test, y_train, y_test,
         y_pred_full, lons, lats, lons1, lats1, area_flat, m, kern,
         plot_dir + TestName[0] + '_')
예제 #3
0
def TrainTestScale(X, y, Names, TestName, lons, lats, lons1, lats1, area_flat,
                   plot_dir):
    (X_train, X_test, y_train, y_test, names_train,
     names_test) = split_set(X, y, Names, TestName)
    # Scale
    scaler_x = StandardScaler()
    scaler_x.fit(X_train)
    X_train_norm = scaler_x.transform(X_train)
    X_test_norm = scaler_x.transform(X_test)
    scaler_y = StandardScaler()
    scaler_y.fit(y_train)
    y_train_norm = scaler_y.transform(y_train)
    y_test_norm = scaler_y.transform(y_test)
    # Train
    (m, kern) = TrainModel(X_train_norm, y_train_norm)
    # Predict
    y_pred_norm, cov = TestModel(m, X_test_norm, y_test_norm)
    y_pred = scaler_y.inverse_transform(y_pred_norm)
    # Plot
    PlotMap(y_test, y_pred, lons, lats, names_train, names_test, plot_dir,
            area_flat)
    regions_all = ['Global'] + list(RegionsList)
    print(y_pred.shape)
    for v in range(len(TestName)):
        Validation(y_test[v:v + 1, ],
                   y_pred[v:v + 1, :],
                   cov[v:v + 1, :],
                   lons,
                   lats,
                   lons1,
                   lats1,
                   names_train,
                   names_test,
                   plot_dir + TestName[v] + '_',
                   area_flat,
                   metric_regions=regions_all)
    Save(names_train, names_test, X_train, X_test, y_train, y_test, y_pred,
         lons, lats, lons1, lats1, area_flat, m, kern,
         plot_dir + TestName[0] + '_')
예제 #4
0
area_flat = area.flatten()
print(area_flat.shape,X_SfcTemp.shape)
regions = ['Europe','Africa','US','South_America','East_Asia','India']

# Save to
plot_dir = '/work/lm2612/GPPCA/'

# Test data set
print(Names)


for i in range(len(Names)):
    print("Training Stage:")
    TestName = Names[i]

    (X_train,X_test,y_train,y_test,names_train,names_test) = split_set(X,y,Names,TestName)
    # PCA
    X_PCA = PCA().fit(X_train)
    y_PCA = PCA().fit(y_train)
    X_trans = X_PCA.transform(X_train)
    y_trans = y_PCA.transform(y_train)

    # GP Model
    (N,p) = X_trans.shape
    kern = GPy.kern.Matern52(p,ARD=True)+GPy.kern.Linear(p,ARD=True)    

    print("kernel used: {}".format(kern))

    m = GPy.models.GPRegression(X_trans,y_trans,kern)
    m.optimize()
예제 #5
0
def TrainTestRegional(X,
                      y,
                      Names,
                      TestName,
                      lons,
                      lats,
                      lons1,
                      lats1,
                      area_flat,
                      plot_dir,
                      regions=RegionOnlyList,
                      reg_inputs=True,
                      reg_outputs=True):
    (X_train, X_test, y_train, y_test, names_train,
     names_test) = split_set(X, y, Names, TestName)
    # PCA
    if reg_inputs is True:
        print(regions)
        X_trans = split_into_regions(X_train,
                                     Area(lons1, lats1).flatten(), lons, lats,
                                     lons1, lats1, regions)
        X_test_trans = split_into_regions(X_test,
                                          Area(lons1, lats1).flatten(), lons,
                                          lats, lons1, lats1, regions)
    else:
        X_trans = X_train
        X_test_trans = X_test
    if reg_outputs is True:
        print(regions)
        y_trans = split_into_regions(y_train,
                                     Area(lons1, lats1).flatten(), lons, lats,
                                     lons1, lats1, regions)
        y_test_trans = split_into_regions(y_test,
                                          Area(lons1, lats1).flatten(), lons,
                                          lats, lons1, lats1, regions)
    else:
        y_trans = y_train
        y_test_trans = y_test

    # Train
    (m, kern) = TrainModel(X_trans, y_trans)
    y_pred, cov = TestModel(m, X_test_trans, y_test_trans)

    # Inverse PC
    if reg_outputs is True:
        areas = np.ones(len(regions))
        RegionalMetrics(y_pred, y_test_trans, regions, lons, lats, lons1,
                        lats1, names_train, names_test,
                        plot_dir + TestName[0] + '_', areas)
        GPError(cov, y_pred, y_test_trans, regions, lons, lats, lons1, lats1,
                names_train, names_test, plot_dir + TestName[0] + '_', areas)
    else:
        y_pred_full = y_pred
        # Plot
        regions_all = ['Global'] + list(RegionsList)
        print(TestName[0])
        PlotMap(y_test, y_pred_full, lons, lats, names_train, names_test,
                plot_dir, area_flat)
        Validation(y_test,
                   y_pred_full,
                   cov,
                   lons,
                   lats,
                   lons1,
                   lats1,
                   names_train,
                   names_test,
                   plot_dir + TestName[0] + '_',
                   area_flat,
                   metric_regions=regions_all)
    Save(names_train, names_test, X_train, X_test, y_train, y_test, y_pred,
         lons, lats, lons1, lats1, area_flat, m, kern,
         plot_dir + TestName[0] + '_')