예제 #1
0
    def forward(self, input, max_layer):
        input = sf.pad(input, (2,2,2,2))
        if self.training: #forward pass for train
            pot = self.conv1(input)
            spk, pot = sf.fire(pot, Threshold_1, True)
            pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
            if max_layer == 1:
                winners = sf.get_k_winners(pot, 8, 5)
                self.save_data(input, pot, spk, winners)
                return spk, pot
            spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
            pot = self.conv2(spk_in)
            spk, pot = sf.fire(pot, Threshold_2, True)
            pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
            if max_layer == 2:
                winners = sf.get_k_winners(pot, 8, 5)
                self.save_data(spk_in, pot, spk, winners)
                return spk, pot

        else:
            pot = self.conv1(input)
            spk, pot = sf.fire(pot, Threshold_1, True)
            pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
            # spk, pot = sf.fire(pot, 10, True)
            # pot = self.conv3(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
           # spk = sf.fire(pot, 10)
           # pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))
           # spk = sf.fire_(pot)

            return spk, pot
예제 #2
0
파일: SkipCTNN.py 프로젝트: zifanw/tnn
 def forward(self, input, max_layer):
     input = sf.pad(input, (2,2,2,2))
     if self.training: #forward pass for train
         if max_layer < 3:
             pot = self.conv1(input)
             spk, pot = sf.fire(pot, 15, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 1:
                 winners = sf.get_k_winners(pot, 5, 3)
                 self.save_data(input, pot, spk, winners)
                 return spk, pot
             spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
             pot = self.conv2(spk_in)
             spk, pot = sf.fire(pot, 10, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 2:
                 winners = sf.get_k_winners(pot, 8, 5)
                 self.save_data(spk_in, pot, spk, winners)
                 return spk, pot
         else:
             pot = self.conv3(input)
             spk, pot = sf.fire(pot, 15, True)
             pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
             if max_layer == 3:
                 winners = sf.get_k_winners(pot, 5, 3)
                 self.save_data(input, pot, spk, winners)
                 return spk, pot
     else:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, 15, True)
         pot_1 = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
         pot_2 = self.conv3(input)
         pot_2 = self.pool(pot_2)
         return spk, torch.cat([pot_1, pot_2], dim=1)
 def forward(self, input, max_layer):
     input = sf.pad(input.float(), (2, 2, 2, 2), 0)
     if self.training:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             self.spk_cnt1 += 1
             if self.spk_cnt1 >= 500:
                 self.spk_cnt1 = 0
                 ap = torch.tensor(
                     self.stdp1.learning_rate[0][0].item(),
                     device=self.stdp1.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp1.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
             self.save_data(input, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2, 1), (1, 1, 1, 1))
         spk_in = sf.pointwise_inhibition(spk_in)
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
             self.save_data(spk_in, pot, spk, winners)
             return spk, pot
         spk_out = sf.pooling(spk, 2, 2, 1)
         return spk_out
     else:
         print("input:", input.shape)
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         print("spk_conv1:", spk.shape)
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2, 1), (1, 1, 1, 1)))
         spk, pot = sf.fire(pot, self.conv2_t, True)
         print("spk_conv2:", spk.shape)
         spk = sf.pooling(spk, 2, 2, 1)
         print("spk_pool1:", spk.shape)
         return spk
예제 #4
0
파일: RLCTNN.py 프로젝트: zifanw/tnn
 def forward(self, input, max_layer):
     input = sf.pad(input, (2,2,2,2))
     if self.training: #forward pass for train
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, Threshold_1, True)
         pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
         if max_layer == 1:
             winners = sf.get_k_winners(pot, 5, 3)
             self.save_data(input, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1))
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, Threshold_2, True)
         pot = sf.pointwise_inhibition(pot) # inter-channel inhibition
         if max_layer == 2:
             winners = sf.get_k_winners(pot, 8, 2)
             self.save_data(spk_in, pot, spk, winners)
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2))
         pot = self.conv3(spk_in)
         spk = sf.fire_(pot)
         winners = sf.get_k_winners(pot, 1)
         self.save_data(spk_in, pot, spk, winners)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output
     else:
         pot = self.conv1(input)
         spk = sf.fire(pot, 15)
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1,1,1,1)))
         spk = sf.fire(pot, 10)
         pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2,2,2,2)))
         spk = sf.fire_(pot)
         winners = sf.get_k_winners(pot, 1)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
 
         return output
예제 #5
0
 def __call__(self, image):
     image = self.to_tensor(self.grayscale(image))
     image.unsqueeze_(0)
     image = self.filter(image)
     image = sf.pooling(image,
                        self.pooling_size,
                        self.pooling_stride,
                        padding=self.pooling_size // 2)
     if self.lateral_inhibition is not None:
         image = self.lateral_inhibition(image)
     temporal_image = self.temporal_transform(image)
     temporal_image = sf.pointwise_inhibition(temporal_image)
     return temporal_image.sign()
예제 #6
0
 def forward(self, input, max_layer):
     input = sf.pad(input, (2, 2, 2, 2), 0)
     if self.training:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             self.spk_cnt1 += 1
             if self.spk_cnt1 >= 500:
                 self.spk_cnt1 = 0
                 ap = torch.tensor(
                     self.stdp1.learning_rate[0][0].item(),
                     device=self.stdp1.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp1.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k1, self.r1, spk)
             self.ctx["input_spikes"] = input
             self.ctx["potentials"] = pot
             self.ctx["output_spikes"] = spk
             self.ctx["winners"] = winners
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 2, 2), (1, 1, 1, 1))
         pot = self.conv2(spk_in)
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             self.spk_cnt2 += 1
             if self.spk_cnt2 >= 500:
                 self.spk_cnt2 = 0
                 ap = torch.tensor(
                     self.stdp2.learning_rate[0][0].item(),
                     device=self.stdp2.learning_rate[0][0].device) * 2
                 ap = torch.min(ap, self.max_ap)
                 an = ap * -0.75
                 self.stdp2.update_all_learning_rate(ap.item(), an.item())
             pot = sf.pointwise_inhibition(pot)
             spk = pot.sign()
             winners = sf.get_k_winners(pot, self.k2, self.r2, spk)
             self.ctx["input_spikes"] = spk_in
             self.ctx["potentials"] = pot
             self.ctx["output_spikes"] = spk
             self.ctx["winners"] = winners
             return spk, pot
         spk_in = sf.pad(sf.pooling(spk, 3, 3), (2, 2, 2, 2))
         pot = self.conv3(spk_in)
         spk = sf.fire(pot)
         winners = sf.get_k_winners(pot, 1, 0, spk)
         self.ctx["input_spikes"] = spk_in
         self.ctx["potentials"] = pot
         self.ctx["output_spikes"] = spk
         self.ctx["winners"] = winners
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output
     else:
         pot = self.conv1(input)
         spk, pot = sf.fire(pot, self.conv1_t, True)
         if max_layer == 1:
             return spk, pot
         pot = self.conv2(sf.pad(sf.pooling(spk, 2, 2), (1, 1, 1, 1)))
         spk, pot = sf.fire(pot, self.conv2_t, True)
         if max_layer == 2:
             return spk, pot
         pot = self.conv3(sf.pad(sf.pooling(spk, 3, 3), (2, 2, 2, 2)))
         spk = sf.fire(pot)
         winners = sf.get_k_winners(pot, 1, 0, spk)
         output = -1
         if len(winners) != 0:
             output = self.decision_map[winners[0][0]]
         return output