예제 #1
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.update_params()
        mkey = 'Solvent'
        sol_density = tuple(np.ones_like(self.__Density__[mkey]))
        R = self.__R__[mkey]
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(R),
            material=tuple(self.__material__[mkey]),
            relement=self.relement,
            density=tuple(self.__Density__[mkey]),
            sol_density=sol_density,
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__[mkey]),
            NrDep=self.NrDep)
        for mkey in self.__mkeys__:
            if mkey != 'Solvent':
                trho, teirho, tadensity, trhor, teirhor, tadensityr = calc_rho(
                    R=tuple(self.__R__[mkey]),
                    material=tuple(self.__material__[mkey]),
                    relement=self.relement,
                    density=tuple(self.__Density__[mkey]),
                    sol_density=sol_density,
                    Energy=self.Energy,
                    Rmoles=tuple(self.__Rmoles__[mkey]),
                    NrDep=self.NrDep)
                vf = np.array(self.__VolFrac__[mkey])
                rho = rho + vf * trho
                eirho = eirho + vf * teirho
                adensity = adensity + vf * tadensity

        major = np.sum(self.__R__[self.__mkeys__[0]])
        minor = np.sum(
            np.array(self.__R__[self.__mkeys__[0]]) *
            np.array(self.__RzRatio__[self.__mkeys__[0]]))
        self.output_params['scaler_parameters'][
            'Diameter (Angstroms)'] = 2 * major
        self.output_params['scaler_parameters'][
            'Height (Angstroms)'] = 2 * minor
        if self.dist == 'LogNormal':
            dstd = 2 * np.sqrt((np.exp(self.Rsig**2) - 1) *
                               np.exp(2 * np.log(major) + self.Rsig**2))
            hstd = 2 * np.sqrt((np.exp(self.Rsig**2) - 1) *
                               np.exp(2 * np.log(minor) + self.Rsig**2))
            self.output_params['scaler_parameters'][
                'Diameter_Std (Angstroms)'] = dstd
            self.output_params['scaler_parameters'][
                'Height_Std (Angstroms)'] = hstd
        else:
            self.output_params['scaler_parameters'][
                'Diameter_Std (Angstroms)'] = 2 * self.Rsig
            self.output_params['scaler_parameters'][
                'Height_Std (Angstroms)'] = 2 * self.Rsig * minor / major
        if type(self.x) == dict:
            sqf = {}
            key = 'SAXS-term'
            sqft = self.ellipsoid_dict(
                tuple(self.x[key]),
                tuple(self.__R__[self.__mkeys__[0]]),
                tuple(self.__RzRatio__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np,
                Nalf=self.Nalf)
            if self.SF is None:
                struct = np.ones_like(
                    self.x[key]
                )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x[key], D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x[key],
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)
            for key in self.x.keys():
                if key == 'SAXS-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.sbkg  # in cm^-1
                if key == 'Cross-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.cbkg  # in cm^-1
                if key == 'Resonant-term':
                    sqf[key] = self.norm * 6.022e20 * sqft[
                        key] * struct + self.abkg  # in cm^-1
            key1 = 'Total'
            total = self.norm * 6.022e20 * sqft[key1] * struct + self.sbkg
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(
                    tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], rho)
                self.output_params['rho_r'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], eirho)
                self.output_params['eirho_r'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]],
                                          adensity)
                self.output_params['adensity_r'] = {'x': xtmp, 'y': ytmp}
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
                # xtmp,ytmp=create_steps(x=self.__R__[][:-1],y=self.__Rmoles__[:-1])
                # self.output_params['Rmoles_radial']={'x':xtmp,'y':ytmp}
                # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__RzRatio__[:-1])
                # self.output_params['RzRatio_radial'] = {'x': xtmp, 'y': ytmp}
                # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__density__[:-1])
                # self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.ellipsoid(
                tuple(self.x),
                tuple(self.__R__[self.__mkeys__[0]]),
                tuple(self.__RzRatio__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np,
                Nalf=self.Nalf)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.022e20 * self.norm * self.flux * tsqf * svol +
                            self.sbkg)
            sqwerr = (6.022e20 * self.norm * tsqf * svol * self.flux +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(
                tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], rho)
            self.output_params['rho_r'] = {'x': xtmp, 'y': ytmp}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], eirho)
            self.output_params['eirho_r'] = {'x': xtmp, 'y': ytmp}
            xtmp, ytmp = create_steps(self.__R__[self.__mkeys__[0]], adensity)
            self.output_params['adensity_r'] = {'x': xtmp, 'y': ytmp}
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__Rmoles__[:-1])
            # self.output_params['Rmoles_radial'] = {'x':xtmp , 'y': ytmp}
            # sqf = self.output_params[self.term]['y']
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__RzRatio__[:-1])
            # self.output_params['RzRatio_radial'] = {'x': xtmp, 'y': ytmp}
            # xtmp, ytmp = create_steps(x=self.__R__[:-1], y=self.__density__[:-1])
            # self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        return sqf
예제 #2
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.output_params = {'scaler_parameters': {}}
        self.update_params()
        mkey = 'Solvent'
        sol_density = tuple(np.ones_like(self.__Density__[mkey]))
        R = self.__R__[mkey]
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(R),
            material=tuple(self.__material__[mkey]),
            relement=self.relement,
            density=tuple(self.__Density__[mkey]),
            sol_density=sol_density,
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__[mkey]),
            NrDep=self.NrDep)
        for mkey in self.__mkeys__:
            if mkey != 'Solvent':
                trho, teirho, tadensity, trhor, teirhor, tadensityr = calc_rho(
                    R=tuple(self.__R__[mkey]),
                    material=tuple(self.__material__[mkey]),
                    relement=self.relement,
                    density=tuple(self.__Density__[mkey]),
                    sol_density=sol_density,
                    Energy=self.Energy,
                    Rmoles=tuple(self.__Rmoles__[mkey]),
                    NrDep=self.NrDep)
                vf = np.array(self.__VolFrac__[mkey])
                rho = rho + vf * trho
                eirho = eirho + vf * teirho
                adensity = adensity + vf * tadensity

        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(self.__R__[self.__mkeys__[0]]),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                tuple(self.__R__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(
                    tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1]
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1]
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1]
                }
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }

        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(
                tuple(self.x),
                tuple(self.__R__[self.__mkeys__[0]]),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                dist=self.dist,
                Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.020e20 * self.flux * self.norm * tsqf * struct *
                            svol + self.sbkg)
            sqwerr = (6.022e20 * tsqf * svol * self.flux * self.norm * struct +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(
                tuple(self.__R__[self.__mkeys__[0]]), self.Rsig, self.dist,
                self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]}
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1]
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1]
            }
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
        return sqf
예제 #3
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        self.output_params = {'scaler_parameters': {}}
        self.update_params()
        rho, eirho, adensity, rhor, eirhor, adensityr = self.calc_rho(R=tuple(self.__R__),
                                                                      material=tuple(self.__material__),
                                                                      relement=self.relement,
                                                                      density=tuple(self.__density__),
                                                                      sol_density=tuple(self.__sol_density__),
                                                                      Energy=self.Energy, Rmoles=tuple(self.__Rmoles__),
                                                                      NrDep=self.NrDep)
        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(tuple(self.x[key]), tuple(self.__R__),
                                                                       self.Rsig, tuple(rho), tuple(eirho),
                                                                       tuple(adensity), key=key, dist=self.dist,Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(self.x[key])  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key], D=self.D, phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key], D=self.D, phi=self.phi, U=self.U, delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(tuple(self.x[key]), tuple(self.__R__),
                                                                         self.Rsig, tuple(rho), tuple(eirho),
                                                                         tuple(adensity),
                                                                         key=key1,dist=self.dist,Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                self.output_params['Simulated_total_wo_err'] = {'x': self.x[key], 'y': total}
                self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]}
                self.output_params['eirho_r'] = {'x': eirhor[:, 0], 'y': eirhor[:, 1]}
                self.output_params['adensity_r'] = {'x': adensityr[:, 0], 'y': adensityr[:, 1]}
                self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x, D=self.D, phi=self.phi, U=self.U, delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x), tuple(self.__R__), self.Rsig, tuple(rho),
                                                      tuple(eirho), tuple(adensity),dist=self.dist,Np=self.Np)
            sqf = self.norm * np.array(tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            svol = 0.2 ** 2 * 1.5 * 1e-3  # scattering volume in cm^3
            sqerr = np.sqrt(self.flux *self.norm*tsqf * svol)
            sqwerr = (tsqf * svol * self.flux*self.norm + 2 * (0.5 - np.random.rand(len(tsqf))) * sqerr)
            self.output_params['simulated_total_w_err'] = {'x': self.x, 'y': sqwerr, 'yerr': sqerr}
            self.output_params['Total'] = {'x': self.x, 'y': tsqf * svol * self.flux*self.norm}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]}
            self.output_params['eirho_r'] = {'x': eirhor[:, 0], 'y': eirhor[:, 1]}
            self.output_params['adensity_r'] = {'x': adensityr[:, 0], 'y': adensityr[:, 1]}
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            sqf = self.output_params[self.term]['y']
        return sqf
예제 #4
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        self.update_params()
        rt, mt, dt, sdt, rmols = self.create_layers(tuple(self.__R__),
                                                    tuple(self.__material__),
                                                    tuple(self.__density__),
                                                    tuple(
                                                        self.__sol_density__),
                                                    tuple(self.__Rmoles__),
                                                    lnum=self.lnum)
        trt = np.array(rt)
        r = np.cumsum(rt)
        Rtot = np.sum(self.__R__[:-1])
        thickness = Rtot * self.aspect
        self.output_params['scaler_parameters']['Thickness'] = 2 * thickness
        self.output_params['scaler_parameters']['Diameter'] = 2 * Rtot
        dt = np.where(
            ((r - trt / 2) > thickness) & ((r - trt / 2) < Rtot),
            2 * (np.array(dt) - dt[-1]) * np.arcsin(thickness * np.sqrt(
                (Rtot**2 - (r - trt / 2)**2) /
                (Rtot**2 - thickness**2)) / (r - trt / 2)) / np.pi + dt[-1],
            np.array(dt))
        self.output_params['density'] = {'x': r, 'y': dt}
        rho, eirho, adensity, rhor, eirhor, adensityr = self.calc_rho(
            R=rt,
            material=mt,
            relement=self.relement,
            density=tuple(dt),
            sol_density=sdt,
            Energy=self.Energy,
            Rmoles=tuple(rmols),
            NrDep=self.NrDep)
        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    rt,
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  #hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                rt,
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1]
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1]
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1]
                }
                self.output_params['Structure_Factor'] = {
                    'x': self.x,
                    'y': struct
                }
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x),
                                                      rt,
                                                      self.Rsig,
                                                      tuple(rho),
                                                      tuple(eirho),
                                                      tuple(adensity),
                                                      dist=self.dist,
                                                      Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  #in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  #in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  #in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            svol = 0.2**2 * 1.5 * 1e-3  # scattering volume in cm^3
            sqerr = np.sqrt(self.flux * tsqf * svol)
            sqwerr = (tsqf * svol * self.flux + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {
                'x': self.x,
                'y': tsqf * svol * self.flux
            }
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {'x': rhor[:, 0], 'y': rhor[:, 1]}
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1]
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1]
            }
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            sqf = self.output_params[self.term]['y']
        return sqf
예제 #5
0
    def y(self):
        """
        Define the function in terms of x to return some value
        """
        scale = 1e27 / 6.022e23
        svol = 1.5 * 0.0172**2 / 370**2  # scattering volume in cm^3
        self.output_params = {'scaler_parameters': {}}
        self.update_params()
        rho, eirho, adensity, rhor, eirhor, adensityr = calc_rho(
            R=tuple(self.__R__),
            material=tuple(self.__material__),
            relement=self.relement,
            density=tuple(self.__density__),
            sol_density=tuple(self.__sol_density__),
            Energy=self.Energy,
            Rmoles=tuple(self.__Rmoles__),
            NrDep=self.NrDep)
        if type(self.x) == dict:
            sqf = {}
            for key in self.x.keys():
                sqf[key] = self.norm * 6.022e20 * self.new_sphere_dict(
                    tuple(self.x[key]),
                    tuple(self.__R__),
                    self.Rsig,
                    tuple(rho),
                    tuple(eirho),
                    tuple(adensity),
                    key=key,
                    dist=self.dist,
                    Np=self.Np)  # in cm^-1
                if self.SF is None:
                    struct = np.ones_like(
                        self.x[key]
                    )  # hard_sphere_sf(self.x[key], D = self.D, phi = 0.0)
                elif self.SF == 'Hard-Sphere':
                    struct = hard_sphere_sf(self.x[key],
                                            D=self.D,
                                            phi=self.phi)
                else:
                    struct = sticky_sphere_sf(self.x[key],
                                              D=self.D,
                                              phi=self.phi,
                                              U=self.U,
                                              delta=0.01)
                if key == 'SAXS-term':
                    sqf[key] = sqf[key] * struct + self.sbkg
                if key == 'Cross-term':
                    sqf[key] = sqf[key] * struct + self.cbkg
                if key == 'Resonant-term':
                    sqf[key] = sqf[key] * struct + self.abkg
            key1 = 'Total'
            total = self.norm * 6.022e20 * struct * self.new_sphere_dict(
                tuple(self.x[key]),
                tuple(self.__R__),
                self.Rsig,
                tuple(rho),
                tuple(eirho),
                tuple(adensity),
                key=key1,
                dist=self.dist,
                Np=self.Np) + self.sbkg  # in cm^-1
            if not self.__fit__:
                dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__),
                                                    self.Rsig, self.dist,
                                                    self.Np)
                self.output_params['Distribution'] = {'x': dr, 'y': rdist}
                self.output_params['Simulated_total_wo_err'] = {
                    'x': self.x[key],
                    'y': total
                }
                self.output_params['Total'] = {'x': self.x[key], 'y': total}
                for key in self.x.keys():
                    self.output_params[key] = {'x': self.x[key], 'y': sqf[key]}
                self.output_params['rho_r'] = {
                    'x': rhor[:, 0],
                    'y': rhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['eirho_r'] = {
                    'x': eirhor[:, 0],
                    'y': eirhor[:, 1],
                    'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
                }
                self.output_params['adensity_r'] = {
                    'x': adensityr[:, 0],
                    'y': adensityr[:, 1] * scale,
                    'names': ['r (Angs)', 'Density (Molar)']
                }  # in Molar
                self.output_params['Structure_Factor'] = {
                    'x': self.x[key],
                    'y': struct
                }
                xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                          y=self.__Rmoles__[:-1])
                self.output_params['Rmoles_radial'] = {'x': xtmp, 'y': ytmp}
                xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                          y=self.__density__[:-1])
                self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        else:
            if self.SF is None:
                struct = np.ones_like(self.x)
            elif self.SF == 'Hard-Sphere':
                struct = hard_sphere_sf(self.x, D=self.D, phi=self.phi)
            else:
                struct = sticky_sphere_sf(self.x,
                                          D=self.D,
                                          phi=self.phi,
                                          U=self.U,
                                          delta=0.01)

            tsqf, eisqf, asqf, csqf = self.new_sphere(tuple(self.x),
                                                      tuple(self.__R__),
                                                      self.Rsig,
                                                      tuple(rho),
                                                      tuple(eirho),
                                                      tuple(adensity),
                                                      dist=self.dist,
                                                      Np=self.Np)
            sqf = self.norm * np.array(
                tsqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            # if not self.__fit__: #Generate all the quantities below while not fitting
            asqf = self.norm * np.array(
                asqf) * 6.022e20 * struct + self.abkg  # in cm^-1
            eisqf = self.norm * np.array(
                eisqf) * 6.022e20 * struct + self.sbkg  # in cm^-1
            csqf = self.norm * np.array(
                csqf) * 6.022e20 * struct + self.cbkg  # in cm^-1
            sqerr = np.sqrt(6.020e20 * self.flux * self.norm * tsqf * struct *
                            svol + self.sbkg)
            sqwerr = (6.022e20 * tsqf * svol * self.flux * self.norm * struct +
                      self.sbkg + 2 *
                      (0.5 - np.random.rand(len(tsqf))) * sqerr)
            dr, rdist, totalR = self.calc_Rdist(tuple(self.__R__), self.Rsig,
                                                self.dist, self.Np)
            self.output_params['Distribution'] = {'x': dr, 'y': rdist}
            self.output_params['simulated_total_w_err'] = {
                'x': self.x,
                'y': sqwerr,
                'yerr': sqerr
            }
            self.output_params['Total'] = {'x': self.x, 'y': sqf}
            self.output_params['Resonant-term'] = {'x': self.x, 'y': asqf}
            self.output_params['SAXS-term'] = {'x': self.x, 'y': eisqf}
            self.output_params['Cross-term'] = {'x': self.x, 'y': csqf}
            self.output_params['rho_r'] = {
                'x': rhor[:, 0],
                'y': rhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['eirho_r'] = {
                'x': eirhor[:, 0],
                'y': eirhor[:, 1],
                'names': ['r (Angs)', 'Electron Density (el/Angs^3)']
            }
            self.output_params['adensity_r'] = {
                'x': adensityr[:, 0],
                'y': adensityr[:, 1] * scale,
                'names': ['r (Angs)', 'Density (Molar)']
            }  # in Molar
            self.output_params['Structure_Factor'] = {'x': self.x, 'y': struct}
            xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                      y=self.__Rmoles__[:-1])
            self.output_params['Rmoles_radial'] = {'x': xtmp, 'y': ytmp}
            sqf = self.output_params[self.term]['y']
            xtmp, ytmp = create_steps(x=self.__R__[:-1],
                                      y=self.__density__[:-1])
            self.output_params['Density_radial'] = {'x': xtmp, 'y': ytmp}
        return sqf