def T8():
    '''
    Tests if multiple MLPRs can be created without affecting each other
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16)
    m1.fit(A, Y)
    R1 = m1.GetWeightMatrix(0)
    m2 = MLPR([4, 4, 1], maxIter=16)
    m2.fit(A, Y)
    R2 = m1.GetWeightMatrix(0)
    if (R1 != R2).any():
        return False
    return True
def T14():
    '''
    Tests saving and restore a model
    '''
    A = np.random.rand(32, 4)
    Y = (A.sum(axis=1)**2).reshape(-1, 1)
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann1')
    m1.fit(A, Y)
    m1.SaveModel('./t12ann1')
    R1 = m1.GetWeightMatrix(0)
    ANN.Reset()
    m1 = MLPR([4, 4, 1], maxIter=16, name='t12ann2')
    m1.RestoreModel('./', 't12ann1')
    R2 = m1.GetWeightMatrix(0)
    if (R1 != R2).any():
        return False
    return True