def verify_model(single_model,dataset): is_verify = True if isinstance(single_model,dict): single_model = get_original_format(single_model) single_model = format_into_normal_form(single_model) if dataset =="cifar10": train_model_cifar10(single_model,is_verify) elif dataset == 'mnist': train_model_mnist(single_model,is_verify)
def verify_model(single_model,dataset): ############################################################################ # FUNCTION DESCRIPTION: function to test single model ############################################################################ is_verify = True if isinstance(single_model,dict): single_model = get_original_format(single_model) single_model = format_into_normal_form(single_model) if dataset =="cifar10": train_model_cifar10(single_model,is_verify) elif dataset == 'mnist': train_model_mnist(single_model,is_verify)
def train_new_model(data,action_array,dataset): #print("______________________________________________________") #print("_________________ CANNOT FIND A MATCH ________________") #print("______________________________________________________") # num_model = NUM_MODEL_FROM_EXPERIENCE_REPLAY # if UPDATE_FROM_MEM_REPLAY: # update_qtable_from_mem_replay(data,num_model,dataset) # return 1 if dataset == "cifar10": return train_model_cifar10(action_array) elif dataset == "mnist": return train_model_mnist(action_array)
def train_new_model(data,action_array,dataset): ############################################################################ # FUNCTION DESCRIPTION: function to train new model if Q agent unable to find # from the experience replay. ############################################################################ if UPDATE_AFTER_FIND_NEW_MODEL: update_qtable_from_mem_replay(data,NUM_MODEL_AFTER_FIND_NEW_MODEL,dataset) if dataset == "cifar10": return train_model_cifar10(action_array) elif dataset == "mnist": return train_model_mnist(action_array)
def train_new_model(data,action_array,dataset): print("_________________ CANNOT FIND A MATCH _______________") print("______________________________________________________") # num_model = 5 # update_qtable_from_mem_replay(data,num_model,dataset) # print("LENGTH_DATA :::::::::::::::::::: ", len(data)) # return 1 # return random.uniform(0.70,0.75) # print("action_array: ",action_array) # return get_from_mem_replay(data,action_array) if dataset == "cifar10": return train_model_cifar10(action_array) elif dataset == "mnist": return train(action_array)