예제 #1
0
data_directory = 'TRANK_nk_fit/'
from TRANK import functionize_nk_file, TMM_spectra, error_plot, reducible_rms_error_spectrum, rms_error_spectrum


if __name__=='__main__':


	from numpy import loadtxt, array, arange, square, mean, sqrt
	lamda_fine = loadtxt(data_directory+'fit_nk_fine.txt', usecols = [0], unpack = True)
	lamda_list = loadtxt(data_directory+'fit_nk.txt', usecols = [0], unpack = True)
	fit_nk_f = functionize_nk_file(data_directory+'fit_nk.txt', skiprows = 0, kind = 'linear')

	#lamda_fine = arange(lamda_list.min(), lamda_list.max(), 100)

	spectra_from_fit = TMM_spectra(lamda_list = lamda_fine,
										nk_f = fit_nk_f,
										parameter_list_generator = parameter_list_generator)
	#spectra_from_fit[lamda][ param spectrum] # computational reasons why this is ordered is this way

	#now i need to build independent lamda lists and their spectra
	list_of_lamda_lists = []
	list_of_fit_spectra = []
	for spectrum_function in spectrum_function_list: # create the sub lists for these to all go into
		list_of_lamda_lists.append( [])
		list_of_fit_spectra.append( [])

	for lamda_index in range(len(lamda_fine )):
		lamda = lamda_fine[lamda_index]
		param_index = 0
		for spectrum_index in range(len(spectrum_function_list)):
			if spectrum_function_list[spectrum_index].is_in_bounds(lamda):
예제 #2
0
    make_plots = True
    tmm_spectra_dir = 'tmm_predicted_spectra/'

    noise = 2.0 / 100.0

    dlamda_min = 1
    lamda_min = 300
    lamda_max = 1200

    lamda_list = arange(lamda_min, lamda_max + dlamda_min / 2.0, dlamda_min)

    # this little monster calculates the spectra in parallel
    spectra = array(
        TMM_spectra(
            lamda_list=lamda_list,
            nk_f=nk_f_list[
                layer_index_of_fit],  # we may have buit our parameter_list_generator to have our layer of interest in it, but these functions are all built around analyze variations of our layer nk
            parameter_list_generator=parameter_list_generator))

    #####spectra[lamda index][ T/R/A spectrum index] for reference!

    ## for adding noise
    from numpy.random import rand

    ### for plotting
    if make_plots:
        from matplotlib.pyplot import figure, plot, minorticks_on, show, xlabel, ylabel, close
        from matplotlib.pyplot import gca, subplots_adjust, legend, savefig, title, tight_layout

    ### for saving data
    try_mkdir(tmm_spectra_dir)