class Tacotron2(TacotronAbstract): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, gst=False, gst_embedding_dim=512, gst_num_heads=4, gst_style_tokens=10): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, gst) # init layer dims speaker_embedding_dim = 512 if num_speakers > 1 else 0 gst_embedding_dim = gst_embedding_dim if self.gst else 0 decoder_in_features = 512 + speaker_embedding_dim + gst_embedding_dim encoder_in_features = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # embedding layer self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) # speaker embedding layer if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(encoder_in_features) self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=gst_num_heads, num_style_tokens=gst_style_tokens, embedding_dim=gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def compute_gst(self, inputs, style_input): """ Compute global style token """ device = inputs.device if isinstance(style_input, dict): query = torch.zeros(1, 1, self.gst_embedding_dim // 2).to(device) _GST = torch.tanh(self.gst_layer.style_token_layer.style_tokens) gst_outputs = torch.zeros(1, 1, self.gst_embedding_dim).to(device) for k_token, v_amplifier in style_input.items(): key = _GST[int(k_token)].unsqueeze(0).expand(1, -1, -1) gst_outputs_att = self.gst_layer.style_token_layer.attention( query, key) gst_outputs = gst_outputs + gst_outputs_att * v_amplifier elif style_input is None: gst_outputs = torch.zeros(1, 1, self.gst_embedding_dim).to(device) else: gst_outputs = self.gst_layer(style_input) # pylint: disable=not-callable embedded_gst = gst_outputs.repeat(1, inputs.size(1), 1) return inputs, embedded_gst def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None): # compute mask for padding # B x T_in_max (boolean) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x D_embed x T_in_max embedded_inputs = self.embedding(text).transpose(1, 2) # B x T_in_max x D_en encoder_outputs = self.encoder(embedded_inputs, text_lengths) if self.num_speakers > 1: embedded_speakers = self.speaker_embedding(speaker_ids)[:, None] embedded_speakers = embedded_speakers.repeat( 1, encoder_outputs.size(1), 1) if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, mel_specs) encoder_outputs = torch.cat( [encoder_outputs, embedded_gst, embedded_speakers], dim=-1) else: encoder_outputs = torch.cat( [encoder_outputs, embedded_speakers], dim=-1) else: if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, mel_specs) encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1) # encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs) # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # # sequence masking # if mel_lengths is not None: # decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs) # B x mel_dim x T_out postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs # # sequence masking # if output_mask is not None: # postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs) # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None, input_style=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) if self.num_speakers > 1: embedded_speakers = self.speaker_embedding(speaker_ids)[:, None] embedded_speakers = embedded_speakers.repeat( 1, encoder_outputs.size(1), 1) if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, input_style) encoder_outputs = torch.cat( [encoder_outputs, embedded_gst, embedded_speakers], dim=-1) else: encoder_outputs = torch.cat( [encoder_outputs, embedded_speakers], dim=-1) else: if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, input_style) encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None, input_style=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) if self.num_speakers > 1: embedded_speakers = self.speaker_embedding(speaker_ids)[:, None] embedded_speakers = embedded_speakers.repeat( 1, encoder_outputs.size(1), 1) if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, input_style) encoder_outputs = torch.cat( [encoder_outputs, embedded_gst, embedded_speakers], dim=-1) else: encoder_outputs = torch.cat( [encoder_outputs, embedded_speakers], dim=-1) else: if self.gst: # B x gst_dim encoder_outputs, embedded_gst = self.compute_gst( encoder_outputs, input_style) encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
class Tacotron2(nn.Module): def __init__(self, num_chars, r, attn_win=False, attn_norm="softmax", prenet_type="original", forward_attn=False, trans_agent=False): super(Tacotron2, self).__init__() self.n_mel_channels = 80 self.n_frames_per_step = r self.embedding = nn.Embedding(num_chars, 512) std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) self.encoder = Encoder(512) self.decoder = Decoder(512, self.n_mel_channels, r, attn_win, attn_norm, prenet_type, forward_attn, trans_agent) self.postnet = Postnet(self.n_mel_channels) def shape_outputs(self, mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None): # compute mask for padding mask = sequence_mask(text_lengths).to(text.device) embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, text_lengths) mel_outputs, stop_tokens, alignments = self.decoder( encoder_outputs, mel_specs, mask) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference(self, text): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) mel_outputs, stop_tokens, alignments = self.decoder.inference( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference_truncated(self, text): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
class Tacotron2(TacotronAbstract): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, gst=False): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, gst) decoder_in_features = 512 if num_speakers > 1 else 512 encoder_in_features = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # base layers self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(encoder_in_features) self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: gst_embedding_dim = encoder_in_features self.gst_layer = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None): self._init_states() # compute mask for padding # B x T_in_max (boolean) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x D_embed x T_in_max embedded_inputs = self.embedding(text).transpose(1, 2) # B x T_in_max x D_en encoder_outputs = self.encoder(embedded_inputs, text_lengths) # adding speaker embeddding to encoder output # TODO: multi-speaker # B x speaker_embed_dim if speaker_ids is not None: self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: # B x T_in x embed_dim + speaker_embed_dim encoder_outputs = self._add_speaker_embedding( encoder_outputs, self.speaker_embeddings) encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # global style token if self.gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if mel_lengths is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x mel_dim x T_out postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 1).expand_as(postnet_outputs) # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) if speaker_ids is not None: self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: encoder_outputs = self._add_speaker_embedding( encoder_outputs, self.speaker_embeddings) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def _speaker_embedding_pass(self, encoder_outputs, speaker_ids): # TODO: multi-speaker # if hasattr(self, "speaker_embedding") and speaker_ids is None: # raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided") # if hasattr(self, "speaker_embedding") and speaker_ids is not None: # speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), # encoder_outputs.size(1), # -1) # encoder_outputs = encoder_outputs + speaker_embeddings # return encoder_outputs pass
class Tacotron2(nn.Module): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False): super(Tacotron2, self).__init__() self.postnet_output_dim = postnet_output_dim self.decoder_output_dim = decoder_output_dim self.n_frames_per_step = r self.bidirectional_decoder = bidirectional_decoder decoder_dim = 512 if num_speakers > 1 else 512 encoder_dim = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # embedding layer self.embedding = nn.Embedding(num_chars, 512) std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.speaker_embeddings = None self.speaker_embeddings_projected = None self.encoder = Encoder(encoder_dim) self.decoder = Decoder(decoder_dim, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) if self.bidirectional_decoder: self.decoder_backward = copy.deepcopy(self.decoder) self.postnet = Postnet(self.postnet_output_dim) def _init_states(self): self.speaker_embeddings = None self.speaker_embeddings_projected = None @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None): self._init_states() # compute mask for padding mask = sequence_mask(text_lengths).to(text.device) embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, text_lengths) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, mask) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_inference( mel_specs, encoder_outputs, mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def _backward_inference(self, mel_specs, encoder_outputs, mask): decoder_outputs_b, alignments_b, _ = self.decoder_backward( encoder_outputs, torch.flip(mel_specs, dims=(1, )), mask, self.speaker_embeddings_projected) decoder_outputs_b = decoder_outputs_b.transpose(1, 2) return decoder_outputs_b, alignments_b def _add_speaker_embedding(self, encoder_outputs, speaker_ids): if hasattr(self, "speaker_embedding") and speaker_ids is None: raise RuntimeError( " [!] Model has speaker embedding layer but speaker_id is not provided" ) if hasattr(self, "speaker_embedding") and speaker_ids is not None: speaker_embeddings = self.speaker_embedding(speaker_ids) speaker_embeddings.unsqueeze_(1) speaker_embeddings = speaker_embeddings.expand( encoder_outputs.size(0), encoder_outputs.size(1), -1) encoder_outputs = encoder_outputs + speaker_embeddings return encoder_outputs
class Tacotron2(nn.Module): def __init__(self, num_chars, num_speakers, r, attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, separate_stopnet=True): super(Tacotron2, self).__init__() self.n_mel_channels = 80 self.n_frames_per_step = r self.embedding = nn.Embedding(num_chars, 512) std = sqrt(2.0 / (num_chars + 512)) val = sqrt(3.0) * std # uniform bounds for std self.embedding.weight.data.uniform_(-val, val) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(512) self.decoder = Decoder(512, self.n_mel_channels, r, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, separate_stopnet) self.postnet = Postnet(self.n_mel_channels) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, speaker_ids=None): # compute mask for padding mask = sequence_mask(text_lengths).to(text.device) embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder(embedded_inputs, text_lengths) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder( encoder_outputs, mel_specs, mask) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder.inference( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, stop_tokens, alignments = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def _add_speaker_embedding(self, encoder_outputs, speaker_ids): if hasattr(self, "speaker_embedding") and speaker_ids is None: raise RuntimeError( " [!] Model has speaker embedding layer but speaker_id is not provided" ) if hasattr(self, "speaker_embedding") and speaker_ids is not None: speaker_embeddings = self.speaker_embedding(speaker_ids) speaker_embeddings.unsqueeze_(1) speaker_embeddings = speaker_embeddings.expand( encoder_outputs.size(0), encoder_outputs.size(1), -1) encoder_outputs = encoder_outputs + speaker_embeddings return encoder_outputs