def say(self, text, output): # load the model model = Tacotron(self.CONFIG.embedding_size, self.CONFIG.num_freq, self.CONFIG.num_mels, self.CONFIG.r) # load the audio processor ap = AudioProcessor(self.CONFIG.sample_rate, self.CONFIG.num_mels, self.CONFIG.min_level_db, self.CONFIG.frame_shift_ms, self.CONFIG.frame_length_ms, self.CONFIG.ref_level_db, self.CONFIG.num_freq, self.CONFIG.power, self.CONFIG.preemphasis, 60) # load model state if self.use_cuda: cp = torch.load(self.MODEL_PATH) else: cp = torch.load(self.MODEL_PATH, map_location=lambda storage, loc: storage) # load the model model.load_state_dict(cp['model']) if self.use_cuda: model.cuda() model.eval() model.decoder.max_decoder_steps = 400 wavs = self.text2audio(text, model, self.CONFIG, self.use_cuda, ap) audio = np.concatenate(wavs) ap.save_wav(audio, output) return
def load_model(self, MODEL_PATH, sentence, CONFIG, use_cuda, OUT_FILE): # load the model num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols) model = Tacotron(num_chars, CONFIG.embedding_size, CONFIG.audio['num_freq'], CONFIG.audio['num_mels'], CONFIG.r, attn_windowing=False) # load the audio processor # CONFIG.audio["power"] = 1.3 CONFIG.audio["preemphasis"] = 0.97 ap = AudioProcessor(**CONFIG.audio) # load model state if use_cuda: cp = torch.load(MODEL_PATH) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() model.decoder.max_decoder_steps = 1000 align, spec, stop_tokens, wav_norm = self.tts(model, sentence, CONFIG, use_cuda, ap, OUT_FILE) return wav_norm
class Synthesizer(object): def load_model(self, model_path, model_name, model_config, use_cuda): model_config = os.path.join(model_path, model_config) self.model_file = os.path.join(model_path, model_name) print(" > Loading model ...") print(" | > model config: ", model_config) print(" | > model file: ", self.model_file) config = load_config(model_config) self.config = config self.use_cuda = use_cuda self.model = Tacotron(config.embedding_size, config.num_freq, config.num_mels, config.r) self.ap = AudioProcessor(config.sample_rate, config.num_mels, config.min_level_db, config.frame_shift_ms, config.frame_length_ms, config.preemphasis, config.ref_level_db, config.num_freq, config.power, griffin_lim_iters=60) # load model state if use_cuda: cp = torch.load(self.model_file) else: cp = torch.load(self.model_file, map_location=lambda storage, loc: storage) # load the model self.model.load_state_dict(cp['model']) if use_cuda: self.model.cuda() self.model.eval() def save_wav(self, wav, path): wav *= 32767 / max(1e-8, np.max(np.abs(wav))) # sf.write(path, wav.astype(np.int32), self.config.sample_rate, format='wav') # wav = librosa.util.normalize(wav.astype(np.float), norm=np.inf, axis=None) # wav = wav / wav.max() # sf.write(path, wav.astype('float'), self.config.sample_rate, format='ogg') scipy.io.wavfile.write(path, self.config.sample_rate, wav.astype(np.int16)) # librosa.output.write_wav(path, wav.astype(np.int16), self.config.sample_rate, norm=True) def tts(self, text): text_cleaner = [self.config.text_cleaner] wavs = [] for sen in text.split('.'): if len(sen) < 3: continue sen = sen.strip() sen +='.' print(sen) sen = sen.strip() seq = np.array(text_to_sequence(text, text_cleaner)) chars_var = torch.from_numpy(seq).unsqueeze(0) if self.use_cuda: chars_var = chars_var.cuda() mel_out, linear_out, alignments, stop_tokens = self.model.forward(chars_var) linear_out = linear_out[0].data.cpu().numpy() wav = self.ap.inv_spectrogram(linear_out.T) # wav = wav[:self.ap.find_endpoint(wav)] out = io.BytesIO() wavs.append(wav) wavs.append(np.zeros(10000)) self.save_wav(wav, out) return out
def tts(text, model_path='model/best_model.pth.tar', config_path='model/config.json', use_cuda=False): CONFIG = load_config(config_path) model = Tacotron(CONFIG.embedding_size, CONFIG.num_freq, CONFIG.num_mels, CONFIG.r) if use_cuda: cp = torch.load(model_path + seq_to_seq_test_model_fname, map_location='cuda:0') else: cp = torch.load(model_path, map_location=lambda storage, loc: storage) model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() model.decoder.max_decoder_steps = 250 ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db, CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, CONFIG.preemphasis, griffin_lim_iters=50) t_1 = time.time() text_cleaner = [CONFIG.text_cleaner] seq = np.array(text_to_sequence(text, text_cleaner)) chars_var = torch.from_numpy(seq).unsqueeze(0) if use_cuda: chars_var = chars_var.cuda() linear_out = model.forward(chars_var.long()) linear_out = linear_out[0].data.cpu().numpy() waveform = ap.inv_spectrogram(linear_out.T) waveform = waveform[:ap.find_endpoint(waveform)] out_path = 'static/samples/' os.makedirs(out_path, exist_ok=True) file_name = text.replace(" ", "_").replace(".", "") + ".wav" out_path = os.path.join(out_path, file_name) ap.save_wav(waveform, out_path) # print(" > Run-time: {}".format(time.time() - t_1)) return file_name
class tts_class: def __init__(self): # Set constants ROOT_PATH = 'TTS/tts_model/' MODEL_PATH = ROOT_PATH + '/best_model.pth.tar' # MODEL_PATH_TMP = ROOT_PATH + '/best_model.pth.tar' CONFIG_PATH = ROOT_PATH + '/config.json' OUT_FOLDER = ROOT_PATH + '/test' self.CONFIG = load_config(CONFIG_PATH) self.use_cuda = True # True # load the model self.model = Tacotron(self.CONFIG.embedding_size, self.CONFIG.num_freq, self.CONFIG.num_mels, self.CONFIG.r) # load the audio processor self.ap = AudioProcessor(self.CONFIG.sample_rate, self.CONFIG.num_mels, self.CONFIG.min_level_db, self.CONFIG.frame_shift_ms, self.CONFIG.frame_length_ms, self.CONFIG.ref_level_db, self.CONFIG.num_freq, self.CONFIG.power, self.CONFIG.preemphasis, 60) # load model state if self.use_cuda: cp = torch.load(MODEL_PATH) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # load the model self.model.load_state_dict(cp['model']) if self.use_cuda: self.model.cuda() self.model.eval() self.model.decoder.max_decoder_steps = 500 self.nlp = spacy.load("en") def process(self, text): self.model.decoder.max_decoder_steps = 500 wavefiles = self.text2audio(text, self.model, self.CONFIG, self.use_cuda, self.ap) return wavefiles def tts(self, model, text, CONFIG, use_cuda, ap, wavefile, figures=True): waveform, alignment, spectrogram, stop_tokens = create_speech( model, text, CONFIG, use_cuda, ap) self.ap.save_wav(waveform, wavefile) def text2audio(self, text, model, CONFIG, use_cuda, ap): wavefiles = [] base_name = "gen_{}.wav" doc = self.nlp(text) for i, sent in enumerate(doc.sents): text = sent.text.strip() wavefile = base_name.format(i) self.tts(model, text, CONFIG, use_cuda, ap, wavefile) wavefiles.append(wavefile) return wavefiles def play(self, wavefiles): voice = AudioSegment.empty() for wavefile in wavefiles: voice += AudioSegment.from_wav(wavefile) play(voice) for w in wavefiles: os.remove(w)
num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols) model = Tacotron(num_chars, CONFIG.embedding_size, ap.num_freq, ap.num_mels, CONFIG.r, CONFIG.memory_size) # load model state if use_cuda: cp = torch.load(MODEL_PATH) else: cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage) # load the model model.load_state_dict(cp['model']) if use_cuda: model.cuda() model.eval() bits = 10 wavernn = Model( rnn_dims=512, fc_dims=512, mode=VOCODER_CONFIG.mode, mulaw=VOCODER_CONFIG.mulaw, pad=VOCODER_CONFIG.pad, use_aux_net=VOCODER_CONFIG.use_aux_net, use_upsample_net=VOCODER_CONFIG.use_upsample_net, upsample_factors=VOCODER_CONFIG.upsample_factors, feat_dims=80, compute_dims=128, res_out_dims=128,