class Tacotron2(TacotronAbstract): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, encoder_in_features=512, decoder_in_features=512, speaker_embedding_dim=None, gst=False, gst_embedding_dim=512, gst_num_heads=4, gst_style_tokens=10): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, encoder_in_features, decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens) # speaker embedding layer if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embedding_dim = 512 self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) # speaker and gst embeddings is concat in decoder input if self.num_speakers > 1: self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim # embedding layer self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=self.gst_num_heads, num_style_tokens=self.gst_style_tokens, embedding_dim=self.gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None, speaker_embeddings=None): # compute mask for padding # B x T_in_max (boolean) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x D_embed x T_in_max embedded_inputs = self.embedding(text).transpose(1, 2) # B x T_in_max x D_en encoder_outputs = self.encoder(embedded_inputs, text_lengths) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) if self.num_speakers > 1: if not self.embeddings_per_sample: # B x 1 x speaker_embed_dim speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] else: # B x 1 x speaker_embed_dim speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if mel_lengths is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x mel_dim x T_out postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 1).expand_as(postnet_outputs) # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, style_mel) if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, style_mel) if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, encoder_in_features=512, decoder_in_features=512, speaker_embedding_dim=None, gst=False, gst_embedding_dim=512, gst_num_heads=4, gst_style_tokens=10): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, encoder_in_features, decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens) # speaker embedding layer if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embedding_dim = 512 self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) # speaker and gst embeddings is concat in decoder input if self.num_speakers > 1: self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim # embedding layer self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=self.gst_num_heads, num_style_tokens=self.gst_style_tokens, embedding_dim=self.gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet)
def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, gst=False): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, gst) decoder_in_features = 512 if num_speakers > 1 else 512 encoder_in_features = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # base layers self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(encoder_in_features) self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: gst_embedding_dim = encoder_in_features self.gst_layer = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim)
class Tacotron2(TacotronAbstract): def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, gst=False): super(Tacotron2, self).__init__(num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, gst) decoder_in_features = 512 if num_speakers > 1 else 512 encoder_in_features = 512 if num_speakers > 1 else 512 proj_speaker_dim = 80 if num_speakers > 1 else 0 # base layers self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) if num_speakers > 1: self.speaker_embedding = nn.Embedding(num_speakers, 512) self.speaker_embedding.weight.data.normal_(0, 0.3) self.encoder = Encoder(encoder_in_features) self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: gst_embedding_dim = encoder_in_features self.gst_layer = GST(num_mel=80, num_heads=4, num_style_tokens=10, embedding_dim=gst_embedding_dim) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, proj_speaker_dim) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None): self._init_states() # compute mask for padding # B x T_in_max (boolean) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x D_embed x T_in_max embedded_inputs = self.embedding(text).transpose(1, 2) # B x T_in_max x D_en encoder_outputs = self.encoder(embedded_inputs, text_lengths) # adding speaker embeddding to encoder output # TODO: multi-speaker # B x speaker_embed_dim if speaker_ids is not None: self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: # B x T_in x embed_dim + speaker_embed_dim encoder_outputs = self._add_speaker_embedding( encoder_outputs, self.speaker_embeddings) encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # global style token if self.gst: # B x gst_dim encoder_outputs = self.compute_gst(encoder_outputs, mel_specs) # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if mel_lengths is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x mel_dim x T_out postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 1).expand_as(postnet_outputs) # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) if speaker_ids is not None: self.compute_speaker_embedding(speaker_ids) if self.num_speakers > 1: encoder_outputs = self._add_speaker_embedding( encoder_outputs, self.speaker_embeddings) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) encoder_outputs = self._add_speaker_embedding(encoder_outputs, speaker_ids) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens def _speaker_embedding_pass(self, encoder_outputs, speaker_ids): # TODO: multi-speaker # if hasattr(self, "speaker_embedding") and speaker_ids is None: # raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided") # if hasattr(self, "speaker_embedding") and speaker_ids is not None: # speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0), # encoder_outputs.size(1), # -1) # encoder_outputs = encoder_outputs + speaker_embeddings # return encoder_outputs pass
class Tacotron2(TacotronAbstract): """Tacotron2 as in https://arxiv.org/abs/1712.05884 It's an autoregressive encoder-attention-decoder-postnet architecture. Args: num_chars (int): number of input characters to define the size of embedding layer. num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings. r (int): initial model reduction rate. postnet_output_dim (int, optional): postnet output channels. Defaults to 80. decoder_output_dim (int, optional): decoder output channels. Defaults to 80. attn_type (str, optional): attention type. Check ```TTS.tts.layers.common_layers.init_attn```. Defaults to 'original'. attn_win (bool, optional): enable/disable attention windowing. It especially useful at inference to keep attention alignment diagonal. Defaults to False. attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax". prenet_type (str, optional): prenet type for the decoder. Defaults to "original". prenet_dropout (bool, optional): prenet dropout rate. Defaults to True. forward_attn (bool, optional): enable/disable forward attention. It is only valid if ```attn_type``` is ```original```. Defaults to False. trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False. forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False. location_attn (bool, optional): enable/disable location sensitive attention. It is only valid if ```attn_type``` is ```original```. Defaults to True. attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5. separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient flow from stopnet to the rest of the model. Defaults to True. bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False. double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False. ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None. encoder_in_features (int, optional): input channels for the encoder. Defaults to 512. decoder_in_features (int, optional): input channels for the decoder. Defaults to 512. speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None. gst (bool, optional): enable/disable global style token learning. Defaults to False. gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512. gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4. gst_style_tokens (int, optional): number of GST tokens. Defaults to 10. gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False. """ def __init__(self, num_chars, num_speakers, r, postnet_output_dim=80, decoder_output_dim=80, attn_type='original', attn_win=False, attn_norm="softmax", prenet_type="original", prenet_dropout=True, forward_attn=False, trans_agent=False, forward_attn_mask=False, location_attn=True, attn_K=5, separate_stopnet=True, bidirectional_decoder=False, double_decoder_consistency=False, ddc_r=None, encoder_in_features=512, decoder_in_features=512, speaker_embedding_dim=None, gst=False, gst_embedding_dim=512, gst_num_heads=4, gst_style_tokens=10, gst_use_speaker_embedding=False): super(Tacotron2, self).__init__( num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, bidirectional_decoder, double_decoder_consistency, ddc_r, encoder_in_features, decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim, gst_num_heads, gst_style_tokens, gst_use_speaker_embedding) # speaker embedding layer if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embedding_dim = 512 self.speaker_embedding = nn.Embedding(self.num_speakers, speaker_embedding_dim) self.speaker_embedding.weight.data.normal_(0, 0.3) # speaker and gst embeddings is concat in decoder input if self.num_speakers > 1: self.decoder_in_features += speaker_embedding_dim # add speaker embedding dim # embedding layer self.embedding = nn.Embedding(num_chars, 512, padding_idx=0) # base model layers self.encoder = Encoder(self.encoder_in_features) self.decoder = Decoder(self.decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) self.postnet = Postnet(self.postnet_output_dim) # global style token layers if self.gst: self.gst_layer = GST(num_mel=80, num_heads=self.gst_num_heads, num_style_tokens=self.gst_style_tokens, gst_embedding_dim=self.gst_embedding_dim, speaker_embedding_dim=speaker_embedding_dim if self.embeddings_per_sample and self.gst_use_speaker_embedding else None) # backward pass decoder if self.bidirectional_decoder: self._init_backward_decoder() # setup DDC if self.double_decoder_consistency: self.coarse_decoder = Decoder( self.decoder_in_features, self.decoder_output_dim, ddc_r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet) @staticmethod def shape_outputs(mel_outputs, mel_outputs_postnet, alignments): mel_outputs = mel_outputs.transpose(1, 2) mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2) return mel_outputs, mel_outputs_postnet, alignments def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None, speaker_embeddings=None): """ Shapes: text: [B, T_in] text_lengths: [B] mel_specs: [B, T_out, C] mel_lengths: [B] speaker_ids: [B, 1] speaker_embeddings: [B, C] """ # compute mask for padding # B x T_in_max (boolean) input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths) # B x D_embed x T_in_max embedded_inputs = self.embedding(text).transpose(1, 2) # B x T_in_max x D_en encoder_outputs = self.encoder(embedded_inputs, text_lengths) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst( encoder_outputs, mel_specs, speaker_embeddings if self.gst_use_speaker_embedding else None) if self.num_speakers > 1: if not self.embeddings_per_sample: # B x 1 x speaker_embed_dim speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] else: # B x 1 x speaker_embed_dim speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1) encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as( encoder_outputs) # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r decoder_outputs, alignments, stop_tokens = self.decoder( encoder_outputs, mel_specs, input_mask) # sequence masking if mel_lengths is not None: decoder_outputs = decoder_outputs * output_mask.unsqueeze( 1).expand_as(decoder_outputs) # B x mel_dim x T_out postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs # sequence masking if output_mask is not None: postnet_outputs = postnet_outputs * output_mask.unsqueeze( 1).expand_as(postnet_outputs) # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) if self.bidirectional_decoder: decoder_outputs_backward, alignments_backward = self._backward_pass( mel_specs, encoder_outputs, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward if self.double_decoder_consistency: decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass( mel_specs, encoder_outputs, alignments, input_mask) return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward return decoder_outputs, postnet_outputs, alignments, stop_tokens @torch.no_grad() def inference(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference(embedded_inputs) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst( encoder_outputs, style_mel, speaker_embeddings if self.gst_use_speaker_embedding else None) if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) decoder_outputs, alignments, stop_tokens = self.decoder.inference( encoder_outputs) postnet_outputs = self.postnet(decoder_outputs) postnet_outputs = decoder_outputs + postnet_outputs decoder_outputs, postnet_outputs, alignments = self.shape_outputs( decoder_outputs, postnet_outputs, alignments) return decoder_outputs, postnet_outputs, alignments, stop_tokens def inference_truncated(self, text, speaker_ids=None, style_mel=None, speaker_embeddings=None): """ Preserve model states for continuous inference """ embedded_inputs = self.embedding(text).transpose(1, 2) encoder_outputs = self.encoder.inference_truncated(embedded_inputs) if self.gst: # B x gst_dim encoder_outputs = self.compute_gst( encoder_outputs, style_mel, speaker_embeddings if self.gst_use_speaker_embedding else None) if self.num_speakers > 1: if not self.embeddings_per_sample: speaker_embeddings = self.speaker_embedding(speaker_ids)[:, None] encoder_outputs = self._concat_speaker_embedding( encoder_outputs, speaker_embeddings) mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated( encoder_outputs) mel_outputs_postnet = self.postnet(mel_outputs) mel_outputs_postnet = mel_outputs + mel_outputs_postnet mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs( mel_outputs, mel_outputs_postnet, alignments) return mel_outputs, mel_outputs_postnet, alignments, stop_tokens