예제 #1
0
class Tacotron2(TacotronAbstract):
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 postnet_output_dim=80,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=512,
                 decoder_in_features=512,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=512,
                 gst_num_heads=4,
                 gst_style_tokens=10):
        super(Tacotron2,
              self).__init__(num_chars, num_speakers, r, postnet_output_dim,
                             decoder_output_dim, attn_type, attn_win,
                             attn_norm, prenet_type, prenet_dropout,
                             forward_attn, trans_agent, forward_attn_mask,
                             location_attn, attn_K, separate_stopnet,
                             bidirectional_decoder, double_decoder_consistency,
                             ddc_r, encoder_in_features, decoder_in_features,
                             speaker_embedding_dim, gst, gst_embedding_dim,
                             gst_num_heads, gst_style_tokens)

        # speaker embedding layer
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 512
                self.speaker_embedding = nn.Embedding(self.num_speakers,
                                                      speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim  # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features,
                               self.decoder_output_dim, r, attn_type, attn_win,
                               attn_norm, prenet_type, prenet_dropout,
                               forward_attn, trans_agent, forward_attn_mask,
                               location_attn, attn_K, separate_stopnet)
        self.postnet = Postnet(self.postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=self.gst_num_heads,
                                 num_style_tokens=self.gst_style_tokens,
                                 embedding_dim=self.gst_embedding_dim)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, self.decoder_output_dim, ddc_r,
                attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
                forward_attn, trans_agent, forward_attn_mask, location_attn,
                attn_K, separate_stopnet)

    @staticmethod
    def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
        mel_outputs = mel_outputs.transpose(1, 2)
        mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
        return mel_outputs, mel_outputs_postnet, alignments

    def forward(self,
                text,
                text_lengths,
                mel_specs=None,
                mel_lengths=None,
                speaker_ids=None,
                speaker_embeddings=None):
        # compute mask for padding
        # B x T_in_max (boolean)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x D_embed x T_in_max
        embedded_inputs = self.embedding(text).transpose(1, 2)
        # B x T_in_max x D_en
        encoder_outputs = self.encoder(embedded_inputs, text_lengths)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)

        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            else:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)

        # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if mel_lengths is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x mel_dim x T_out
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                1).expand_as(postnet_outputs)
        # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    @torch.no_grad()
    def inference(self,
                  text,
                  speaker_ids=None,
                  style_mel=None,
                  speaker_embeddings=None):
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, style_mel)

        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    def inference_truncated(self,
                            text,
                            speaker_ids=None,
                            style_mel=None,
                            speaker_embeddings=None):
        """
        Preserve model states for continuous inference
        """
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference_truncated(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, style_mel)

        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens
예제 #2
0
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 postnet_output_dim=80,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=512,
                 decoder_in_features=512,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=512,
                 gst_num_heads=4,
                 gst_style_tokens=10):
        super(Tacotron2,
              self).__init__(num_chars, num_speakers, r, postnet_output_dim,
                             decoder_output_dim, attn_type, attn_win,
                             attn_norm, prenet_type, prenet_dropout,
                             forward_attn, trans_agent, forward_attn_mask,
                             location_attn, attn_K, separate_stopnet,
                             bidirectional_decoder, double_decoder_consistency,
                             ddc_r, encoder_in_features, decoder_in_features,
                             speaker_embedding_dim, gst, gst_embedding_dim,
                             gst_num_heads, gst_style_tokens)

        # speaker embedding layer
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 512
                self.speaker_embedding = nn.Embedding(self.num_speakers,
                                                      speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim  # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features,
                               self.decoder_output_dim, r, attn_type, attn_win,
                               attn_norm, prenet_type, prenet_dropout,
                               forward_attn, trans_agent, forward_attn_mask,
                               location_attn, attn_K, separate_stopnet)
        self.postnet = Postnet(self.postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=self.gst_num_heads,
                                 num_style_tokens=self.gst_style_tokens,
                                 embedding_dim=self.gst_embedding_dim)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, self.decoder_output_dim, ddc_r,
                attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
                forward_attn, trans_agent, forward_attn_mask, location_attn,
                attn_K, separate_stopnet)
예제 #3
0
 def __init__(self,
              num_chars,
              num_speakers,
              r,
              postnet_output_dim=80,
              decoder_output_dim=80,
              attn_type='original',
              attn_win=False,
              attn_norm="softmax",
              prenet_type="original",
              prenet_dropout=True,
              forward_attn=False,
              trans_agent=False,
              forward_attn_mask=False,
              location_attn=True,
              attn_K=5,
              separate_stopnet=True,
              bidirectional_decoder=False,
              double_decoder_consistency=False,
              ddc_r=None,
              gst=False):
     super(Tacotron2,
           self).__init__(num_chars, num_speakers, r, postnet_output_dim,
                          decoder_output_dim, attn_type, attn_win,
                          attn_norm, prenet_type, prenet_dropout,
                          forward_attn, trans_agent, forward_attn_mask,
                          location_attn, attn_K, separate_stopnet,
                          bidirectional_decoder, double_decoder_consistency,
                          ddc_r, gst)
     decoder_in_features = 512 if num_speakers > 1 else 512
     encoder_in_features = 512 if num_speakers > 1 else 512
     proj_speaker_dim = 80 if num_speakers > 1 else 0
     # base layers
     self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
     if num_speakers > 1:
         self.speaker_embedding = nn.Embedding(num_speakers, 512)
         self.speaker_embedding.weight.data.normal_(0, 0.3)
     self.encoder = Encoder(encoder_in_features)
     self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r,
                            attn_type, attn_win, attn_norm, prenet_type,
                            prenet_dropout, forward_attn, trans_agent,
                            forward_attn_mask, location_attn, attn_K,
                            separate_stopnet, proj_speaker_dim)
     self.postnet = Postnet(self.postnet_output_dim)
     # global style token layers
     if self.gst:
         gst_embedding_dim = encoder_in_features
         self.gst_layer = GST(num_mel=80,
                              num_heads=4,
                              num_style_tokens=10,
                              embedding_dim=gst_embedding_dim)
     # backward pass decoder
     if self.bidirectional_decoder:
         self._init_backward_decoder()
     # setup DDC
     if self.double_decoder_consistency:
         self.coarse_decoder = Decoder(
             decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
             attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
             trans_agent, forward_attn_mask, location_attn, attn_K,
             separate_stopnet, proj_speaker_dim)
예제 #4
0
class Tacotron2(TacotronAbstract):
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 postnet_output_dim=80,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 gst=False):
        super(Tacotron2,
              self).__init__(num_chars, num_speakers, r, postnet_output_dim,
                             decoder_output_dim, attn_type, attn_win,
                             attn_norm, prenet_type, prenet_dropout,
                             forward_attn, trans_agent, forward_attn_mask,
                             location_attn, attn_K, separate_stopnet,
                             bidirectional_decoder, double_decoder_consistency,
                             ddc_r, gst)
        decoder_in_features = 512 if num_speakers > 1 else 512
        encoder_in_features = 512 if num_speakers > 1 else 512
        proj_speaker_dim = 80 if num_speakers > 1 else 0
        # base layers
        self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
        if num_speakers > 1:
            self.speaker_embedding = nn.Embedding(num_speakers, 512)
            self.speaker_embedding.weight.data.normal_(0, 0.3)
        self.encoder = Encoder(encoder_in_features)
        self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r,
                               attn_type, attn_win, attn_norm, prenet_type,
                               prenet_dropout, forward_attn, trans_agent,
                               forward_attn_mask, location_attn, attn_K,
                               separate_stopnet, proj_speaker_dim)
        self.postnet = Postnet(self.postnet_output_dim)
        # global style token layers
        if self.gst:
            gst_embedding_dim = encoder_in_features
            self.gst_layer = GST(num_mel=80,
                                 num_heads=4,
                                 num_style_tokens=10,
                                 embedding_dim=gst_embedding_dim)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
                attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
                trans_agent, forward_attn_mask, location_attn, attn_K,
                separate_stopnet, proj_speaker_dim)

    @staticmethod
    def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
        mel_outputs = mel_outputs.transpose(1, 2)
        mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
        return mel_outputs, mel_outputs_postnet, alignments

    def forward(self,
                text,
                text_lengths,
                mel_specs=None,
                mel_lengths=None,
                speaker_ids=None):
        self._init_states()
        # compute mask for padding
        # B x T_in_max (boolean)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x D_embed x T_in_max
        embedded_inputs = self.embedding(text).transpose(1, 2)
        # B x T_in_max x D_en
        encoder_outputs = self.encoder(embedded_inputs, text_lengths)
        # adding speaker embeddding to encoder output
        # TODO: multi-speaker
        # B x speaker_embed_dim
        if speaker_ids is not None:
            self.compute_speaker_embedding(speaker_ids)
        if self.num_speakers > 1:
            # B x T_in x embed_dim + speaker_embed_dim
            encoder_outputs = self._add_speaker_embedding(
                encoder_outputs, self.speaker_embeddings)
        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)
        # global style token
        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(encoder_outputs, mel_specs)
        # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if mel_lengths is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x mel_dim x T_out
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                1).expand_as(postnet_outputs)
        # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    @torch.no_grad()
    def inference(self, text, speaker_ids=None):
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference(embedded_inputs)
        if speaker_ids is not None:
            self.compute_speaker_embedding(speaker_ids)
        if self.num_speakers > 1:
            encoder_outputs = self._add_speaker_embedding(
                encoder_outputs, self.speaker_embeddings)
        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    def inference_truncated(self, text, speaker_ids=None):
        """
        Preserve model states for continuous inference
        """
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
        encoder_outputs = self._add_speaker_embedding(encoder_outputs,
                                                      speaker_ids)
        mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens

    def _speaker_embedding_pass(self, encoder_outputs, speaker_ids):
        # TODO: multi-speaker
        # if hasattr(self, "speaker_embedding") and speaker_ids is None:
        #     raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
        # if hasattr(self, "speaker_embedding") and speaker_ids is not None:

        #     speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
        #                                                    encoder_outputs.size(1),
        #                                                    -1)
        #     encoder_outputs = encoder_outputs + speaker_embeddings
        # return encoder_outputs
        pass
예제 #5
0
class Tacotron2(TacotronAbstract):
    """Tacotron2 as in https://arxiv.org/abs/1712.05884

    It's an autoregressive encoder-attention-decoder-postnet architecture.

    Args:
        num_chars (int): number of input characters to define the size of embedding layer.
        num_speakers (int): number of speakers in the dataset. >1 enables multi-speaker training and model learns speaker embeddings.
        r (int): initial model reduction rate.
        postnet_output_dim (int, optional): postnet output channels. Defaults to 80.
        decoder_output_dim (int, optional): decoder output channels. Defaults to 80.
        attn_type (str, optional): attention type. Check ```TTS.tts.layers.common_layers.init_attn```. Defaults to 'original'.
        attn_win (bool, optional): enable/disable attention windowing.
            It especially useful at inference to keep attention alignment diagonal. Defaults to False.
        attn_norm (str, optional): Attention normalization method. "sigmoid" or "softmax". Defaults to "softmax".
        prenet_type (str, optional): prenet type for the decoder. Defaults to "original".
        prenet_dropout (bool, optional): prenet dropout rate. Defaults to True.
        forward_attn (bool, optional): enable/disable forward attention.
            It is only valid if ```attn_type``` is ```original```.  Defaults to False.
        trans_agent (bool, optional): enable/disable transition agent in forward attention. Defaults to False.
        forward_attn_mask (bool, optional): enable/disable extra masking over forward attention. Defaults to False.
        location_attn (bool, optional): enable/disable location sensitive attention.
            It is only valid if ```attn_type``` is ```original```. Defaults to True.
        attn_K (int, optional): Number of attention heads for GMM attention. Defaults to 5.
        separate_stopnet (bool, optional): enable/disable separate stopnet training without only gradient
            flow from stopnet to the rest of the model.  Defaults to True.
        bidirectional_decoder (bool, optional): enable/disable bidirectional decoding. Defaults to False.
        double_decoder_consistency (bool, optional): enable/disable double decoder consistency. Defaults to False.
        ddc_r (int, optional): reduction rate for the coarse decoder of double decoder consistency. Defaults to None.
        encoder_in_features (int, optional): input channels for the encoder. Defaults to 512.
        decoder_in_features (int, optional): input channels for the decoder. Defaults to 512.
        speaker_embedding_dim (int, optional): external speaker conditioning vector channels. Defaults to None.
        gst (bool, optional): enable/disable global style token learning. Defaults to False.
        gst_embedding_dim (int, optional): size of channels for GST vectors. Defaults to 512.
        gst_num_heads (int, optional): number of attention heads for GST. Defaults to 4.
        gst_style_tokens (int, optional): number of GST tokens. Defaults to 10.
        gst_use_speaker_embedding (bool, optional): enable/disable inputing speaker embedding to GST. Defaults to False.
    """
    def __init__(self,
                 num_chars,
                 num_speakers,
                 r,
                 postnet_output_dim=80,
                 decoder_output_dim=80,
                 attn_type='original',
                 attn_win=False,
                 attn_norm="softmax",
                 prenet_type="original",
                 prenet_dropout=True,
                 forward_attn=False,
                 trans_agent=False,
                 forward_attn_mask=False,
                 location_attn=True,
                 attn_K=5,
                 separate_stopnet=True,
                 bidirectional_decoder=False,
                 double_decoder_consistency=False,
                 ddc_r=None,
                 encoder_in_features=512,
                 decoder_in_features=512,
                 speaker_embedding_dim=None,
                 gst=False,
                 gst_embedding_dim=512,
                 gst_num_heads=4,
                 gst_style_tokens=10,
                 gst_use_speaker_embedding=False):
        super(Tacotron2, self).__init__(
            num_chars, num_speakers, r, postnet_output_dim, decoder_output_dim,
            attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
            forward_attn, trans_agent, forward_attn_mask, location_attn,
            attn_K, separate_stopnet, bidirectional_decoder,
            double_decoder_consistency, ddc_r, encoder_in_features,
            decoder_in_features, speaker_embedding_dim, gst, gst_embedding_dim,
            gst_num_heads, gst_style_tokens, gst_use_speaker_embedding)

        # speaker embedding layer
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embedding_dim = 512
                self.speaker_embedding = nn.Embedding(self.num_speakers,
                                                      speaker_embedding_dim)
                self.speaker_embedding.weight.data.normal_(0, 0.3)

        # speaker and gst embeddings is concat in decoder input
        if self.num_speakers > 1:
            self.decoder_in_features += speaker_embedding_dim  # add speaker embedding dim

        # embedding layer
        self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)

        # base model layers
        self.encoder = Encoder(self.encoder_in_features)
        self.decoder = Decoder(self.decoder_in_features,
                               self.decoder_output_dim, r, attn_type, attn_win,
                               attn_norm, prenet_type, prenet_dropout,
                               forward_attn, trans_agent, forward_attn_mask,
                               location_attn, attn_K, separate_stopnet)
        self.postnet = Postnet(self.postnet_output_dim)

        # global style token layers
        if self.gst:
            self.gst_layer = GST(num_mel=80,
                                 num_heads=self.gst_num_heads,
                                 num_style_tokens=self.gst_style_tokens,
                                 gst_embedding_dim=self.gst_embedding_dim,
                                 speaker_embedding_dim=speaker_embedding_dim
                                 if self.embeddings_per_sample
                                 and self.gst_use_speaker_embedding else None)
        # backward pass decoder
        if self.bidirectional_decoder:
            self._init_backward_decoder()
        # setup DDC
        if self.double_decoder_consistency:
            self.coarse_decoder = Decoder(
                self.decoder_in_features, self.decoder_output_dim, ddc_r,
                attn_type, attn_win, attn_norm, prenet_type, prenet_dropout,
                forward_attn, trans_agent, forward_attn_mask, location_attn,
                attn_K, separate_stopnet)

    @staticmethod
    def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
        mel_outputs = mel_outputs.transpose(1, 2)
        mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
        return mel_outputs, mel_outputs_postnet, alignments

    def forward(self,
                text,
                text_lengths,
                mel_specs=None,
                mel_lengths=None,
                speaker_ids=None,
                speaker_embeddings=None):
        """
        Shapes:
            text: [B, T_in]
            text_lengths: [B]
            mel_specs: [B, T_out, C]
            mel_lengths: [B]
            speaker_ids: [B, 1]
            speaker_embeddings: [B, C]
        """
        # compute mask for padding
        # B x T_in_max (boolean)
        input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
        # B x D_embed x T_in_max
        embedded_inputs = self.embedding(text).transpose(1, 2)
        # B x T_in_max x D_en
        encoder_outputs = self.encoder(embedded_inputs, text_lengths)
        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(
                encoder_outputs, mel_specs,
                speaker_embeddings if self.gst_use_speaker_embedding else None)
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            else:
                # B x 1 x speaker_embed_dim
                speaker_embeddings = torch.unsqueeze(speaker_embeddings, 1)
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(
            encoder_outputs)

        # B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
        decoder_outputs, alignments, stop_tokens = self.decoder(
            encoder_outputs, mel_specs, input_mask)
        # sequence masking
        if mel_lengths is not None:
            decoder_outputs = decoder_outputs * output_mask.unsqueeze(
                1).expand_as(decoder_outputs)
        # B x mel_dim x T_out
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        # sequence masking
        if output_mask is not None:
            postnet_outputs = postnet_outputs * output_mask.unsqueeze(
                1).expand_as(postnet_outputs)
        # B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        if self.bidirectional_decoder:
            decoder_outputs_backward, alignments_backward = self._backward_pass(
                mel_specs, encoder_outputs, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        if self.double_decoder_consistency:
            decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(
                mel_specs, encoder_outputs, alignments, input_mask)
            return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    @torch.no_grad()
    def inference(self,
                  text,
                  speaker_ids=None,
                  style_mel=None,
                  speaker_embeddings=None):
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(
                encoder_outputs, style_mel,
                speaker_embeddings if self.gst_use_speaker_embedding else None)
        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        decoder_outputs, alignments, stop_tokens = self.decoder.inference(
            encoder_outputs)
        postnet_outputs = self.postnet(decoder_outputs)
        postnet_outputs = decoder_outputs + postnet_outputs
        decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
            decoder_outputs, postnet_outputs, alignments)
        return decoder_outputs, postnet_outputs, alignments, stop_tokens

    def inference_truncated(self,
                            text,
                            speaker_ids=None,
                            style_mel=None,
                            speaker_embeddings=None):
        """
        Preserve model states for continuous inference
        """
        embedded_inputs = self.embedding(text).transpose(1, 2)
        encoder_outputs = self.encoder.inference_truncated(embedded_inputs)

        if self.gst:
            # B x gst_dim
            encoder_outputs = self.compute_gst(
                encoder_outputs, style_mel,
                speaker_embeddings if self.gst_use_speaker_embedding else None)

        if self.num_speakers > 1:
            if not self.embeddings_per_sample:
                speaker_embeddings = self.speaker_embedding(speaker_ids)[:,
                                                                         None]
            encoder_outputs = self._concat_speaker_embedding(
                encoder_outputs, speaker_embeddings)

        mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
            encoder_outputs)
        mel_outputs_postnet = self.postnet(mel_outputs)
        mel_outputs_postnet = mel_outputs + mel_outputs_postnet
        mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
            mel_outputs, mel_outputs_postnet, alignments)
        return mel_outputs, mel_outputs_postnet, alignments, stop_tokens