def main(): description = ( "Generate the pedestals from an R0 file, subtract it from another " "R0 file, and plot the comparison of residuals from different " "pedestal methods" ) parser = argparse.ArgumentParser(description=description, formatter_class=Formatter) parser.add_argument('-f', '--file', dest='r0_path', required=True, help='R0 file to obtain residuals from') parser.add_argument('-p', '--pedestal', dest='pedestal_r0_path', required=True, help='R0 file to generate pedestal from') parser.add_argument('-o', '--output', dest='output_dir', required=True, help='directort to store output plots') args = parser.parse_args() r0_path = args.r0_path pedestal_r0_path = args.pedestal_r0_path output_dir = args.output_dir create_directory(output_dir) reader_ped = TIOReader(pedestal_r0_path, max_events=100000) reader_res = TIOReader(r0_path, max_events=100000) # Generate Pedestals pedestal = PedestalTargetCalib( reader_ped.n_pixels, reader_ped.n_samples, reader_ped.n_cells ) desc = "Generating pedestal" for wfs in tqdm(reader_ped, total=reader_ped.n_events, desc=desc): if wfs.missing_packets: continue pedestal.add_to_pedestal(wfs, wfs.first_cell_id) online_stats = OnlineStats() online_hist = OnlineHist(bins=100, range_=(-10, 10)) # Subtract Pedestals desc = "Subtracting pedestal" for wfs in tqdm(reader_res, total=reader_res.n_events, desc=desc): if wfs.missing_packets: continue subtracted_tc = pedestal.subtract_pedestal(wfs, wfs.first_cell_id) online_stats.add_to_stats(subtracted_tc) online_hist.add(subtracted_tc) p_hist = HistPlot() p_hist.plot( online_hist.hist, online_hist.edges, online_stats.mean, online_stats.std, ) p_hist.save(join(output_dir, "hist.pdf"))
def process(r0_paths, output_path): data = [] for ipath, r0_path in enumerate(r0_paths): print(f"Processing: {ipath+1}/{len(r0_paths)}") pedestal_path = r0_path.replace(".tio", "_ped.tcal") regex_r0 = re.search(r".+_tc([\d.]+)_tmc([\d.]+).tio", r0_path) temperature_r0_chamber = float(regex_r0.group(1)) temperature_r0_primary = float(regex_r0.group(2)) regex_ped = re.search(r".+_tc([\d.]+)_tmc([\d.]+)_ped.tcal", pedestal_path) temperature_pedestal_chamber = float(regex_ped.group(1)) temperature_pedestal_primary = float(regex_ped.group(2)) reader = TIOReader(r0_path, max_events=50000) pedestal = PedestalTargetCalib(reader.n_pixels, reader.n_samples, reader.n_cells) pedestal.load_tcal(pedestal_path) online_stats = OnlineStats() online_hist = OnlineHist(bins=100, range_=(-10, 10)) # Subtract Pedestals desc = "Subtracting pedestal" for wfs in tqdm(reader, total=reader.n_events, desc=desc): if wfs.missing_packets: continue subtracted_tc = pedestal.subtract_pedestal(wfs, wfs.first_cell_id)[[0]] online_stats.add_to_stats(subtracted_tc) online_hist.add(subtracted_tc) data.append( dict( temperature_r0_chamber=temperature_r0_chamber, temperature_r0_primary=temperature_r0_primary, temperature_pedestal_chamber=temperature_pedestal_chamber, temperature_pedestal_primary=temperature_pedestal_primary, mean=online_stats.mean, std=online_stats.std, hist=online_hist.hist, edges=online_hist.edges, )) with HDF5Writer(output_path) as writer: writer.write(data=pd.DataFrame(data))
def main(): description = ( "Generate the pedestals from an R0 file, subtract it from another " "R0 file, and plot the comparison of residuals from different " "pedestal methods") parser = argparse.ArgumentParser(description=description, formatter_class=Formatter) parser.add_argument('-f', '--file', dest='r0_path', required=True, help='R0 file to obtain residuals from') parser.add_argument('-p', '--pedestal', dest='pedestal_r0_path', required=True, help='R0 file to generate pedestal from') parser.add_argument('-o', '--output', dest='output_dir', required=True, help='directort to store output plots') args = parser.parse_args() r0_path = args.r0_path pedestal_r0_path = args.pedestal_r0_path output_dir = args.output_dir create_directory(output_dir) reader_ped = TIOReader(pedestal_r0_path) reader_res = TIOReader(r0_path, max_events=1000) # Generate Pedestals pedestal_info = (reader_ped.n_pixels, reader_ped.n_samples, reader_ped.n_cells) pedestal_tc = PedestalTargetCalib(*pedestal_info) pedestal_bp = PedestalBlockphase(*pedestal_info) desc = "Generating pedestal" for wfs in tqdm(reader_ped, total=reader_ped.n_events, desc=desc): if wfs.missing_packets: continue pedestal_tc.add_to_pedestal(wfs, wfs.first_cell_id) pedestal_bp.add_to_pedestal(wfs, wfs.first_cell_id) pstats_tc = PixelStats(reader_res.n_pixels) pstats_bp = PixelStats(reader_res.n_pixels) stats_tc = OnlineStats() stats_bp = OnlineStats() hist_tc = OnlineHist(100, (-10, 10)) hist_bp = OnlineHist(100, (-10, 10)) wf_list_tc = [] wf_list_bp = [] fci = [] # Subtract Pedestals desc = "Subtracting pedestal" for wfs in tqdm(reader_res, total=reader_res.n_events, desc=desc): if wfs.missing_packets: continue subtracted_tc = pedestal_tc.subtract_pedestal(wfs, wfs.first_cell_id) subtracted_bp = pedestal_bp.subtract_pedestal(wfs, wfs.first_cell_id) pstats_tc.add_to_stats(subtracted_tc) stats_tc.add_to_stats(subtracted_tc) hist_tc.add(subtracted_tc) pstats_bp.add_to_stats(subtracted_bp) stats_bp.add_to_stats(subtracted_bp) hist_bp.add(subtracted_bp) wf_list_tc.append(subtracted_tc) wf_list_bp.append(subtracted_bp) fci.append(wfs.first_cell_id) # Plot results label_tc = pedestal_tc.__class__.__name__ label_bp = pedestal_bp.__class__.__name__ p_pix_stats = StatsPlot() p_pix_stats.plot(pstats_tc.mean, pstats_tc.std, label_tc) p_pix_stats.plot(pstats_bp.mean, pstats_bp.std, label_bp) p_pix_stats.save(join(output_dir, "pix_stats.pdf")) p_ci_stats = Camera2(reader_res.mapping) p_ci_stats.set_image(pstats_tc.mean, pstats_tc.std) p_ci_stats.save(join(output_dir, f"ci_stats_{label_tc}.pdf")) p_ci_stats.set_image(pstats_bp.mean, pstats_bp.std) p_ci_stats.save(join(output_dir, f"ci_stats_{label_bp}.pdf")) p_hist = HistPlot() p_hist.plot(hist_tc.hist, hist_tc.edges, stats_tc.mean, stats_tc.std, label_tc) p_hist.plot(hist_bp.hist, hist_bp.edges, stats_bp.mean, stats_bp.std, label_bp) p_hist.save(join(output_dir, "hist.pdf")) p_wf_tc = WaveformPlot() p_wf_bp = WaveformPlot() wfs_tc = np.stack(wf_list_tc) wfs_bp = np.stack(wf_list_bp) avg_tc = np.average(wfs_tc, axis=0) avg_bp = np.average(wfs_bp, axis=0) for iev in range(len(wf_list_tc)): ev_avg_tc = np.average(wf_list_tc[iev] - avg_tc, axis=0) ev_avg_bp = np.average(wf_list_bp[iev] - avg_bp, axis=0) p_wf_tc.plot(ev_avg_tc, fci[iev]) p_wf_bp.plot(ev_avg_bp, fci[iev]) p_wf_tc.save(join(output_dir, f"wfs_{label_tc}.pdf")) p_wf_bp.save(join(output_dir, f"wfs_{label_bp}.pdf"))