예제 #1
0
    def xic(self,
            start_time=0,
            stop_time=99999,
            start_mz=0,
            stop_mz=99999,
            filter='Full ms'):
        start_scan, stop_scan = list(
            map(self.scan_from_time, [start_time, stop_time]))
        #settings = ChromatogramTraceSettings(TraceType.BasePeak)
        settings = ChromatogramTraceSettings(filter,
                                             [Range.Create(start_mz, stop_mz)])

        xic_data = self.source.GetChromatogramData([settings], start_scan,
                                                   stop_scan)
        xic_trace = ChromatogramSignal.FromChromatogramData(xic_data)[0]
        return list(zip(xic_trace.Times, xic_trace.Intensities))
예제 #2
0
 def GetChromatogram(self, scanrange=None, trace_number=0):
     '''Reads the base peak chromatogram for the RAW file.
     Args:
         scanrange = [ start scan for the chromatogram, end scan for the chromatogram.]
     '''
     if scanrange is None:
         scanrange = [self.FirstSpectrumNumber, self.LastSpectrumNumber]
     # Define the settings for getting the Base Peak chromatogram #TraceType.BasePeak
     # Define the settings for getting the TIC chromatogram #TraceType.TIC
     settings = ChromatogramTraceSettings(TraceType.TIC)
     # Get the chromatogram from the RAW file.
     data = self.source.GetChromatogramData([settings], int(scanrange[0]), int(scanrange[1]))
     # Split the data into the chromatograms
     trace = ChromatogramSignal.FromChromatogramData(data)
     # Convert to Numpy Array
     self.ticdat = np.transpose(
         [DotNetArrayToNPArray(trace[trace_number].Times), DotNetArrayToNPArray(trace[trace_number].Intensities)])
     return self.ticdat
예제 #3
0
def get_ei_chromatogram(IRawDataPlus,
                        target_mz,
                        ppm_tolerance=1000,
                        start_scan=-1,
                        end_scan=-1,
                        ms_type='MS'):
    '''ms_type: str ('MS', MS2')
    start_scan: int default -1 will select the lowest available
    end_scan: int default -1 will select the highest available
    '''

    options = MassOptions()
    options.ToleranceUnits = ToleranceUnits.ppm
    options.Tolerance = ppm_tolerance

    settings = ChromatogramTraceSettings(TraceType.MassRange)
    settings.Filter = ms_type
    settings.MassRanges = [Range(target_mz, target_mz)]

    chroma_settings = IChromatogramSettings(settings)

    settings2 = ChromatogramTraceSettings(TraceType.MassRange)
    settings2.Filter = ms_type
    settings2.MassRanges = [Range(target_mz, target_mz)]
    settings2.MassRanges = [Range(404.5, 404.5)]
    chroma_settings2 = IChromatogramSettings(settings2)
    # chroma_settings2 = IChromatogramSettings(settings)
    # print(chroma_settings.FragmentMass)
    # print(chroma_settings.FragmentMass)
    # print(chroma_settings)
    # print(chroma_settings)

    data = IRawDataPlus.GetChromatogramData(
        [chroma_settings, chroma_settings2], start_scan, end_scan, options)

    trace = ChromatogramSignal.FromChromatogramData(data)

    if trace[1].Length > 0:

        print("Base Peak chromatogram ({} points)".format(trace[0].Length))
        rt = []
        tic = []
        scan = []
        for i in range(trace[1].Length):
            # print(trace[0].HasBasePeakData,trace[0].EndTime )

            # print("  {} - {}, {}".format( i, trace[0].Times[i], trace[0].Intensities[i] ))
            rt.append(trace[1].Times[i])
            tic.append(trace[1].Intensities[i])
            scan.append(trace[1].Scans[i])

        plot_chroma(rt, tic)
        plt.show()

    if trace[0].Length > 0:

        print("Base Peak chromatogram ({} points)".format(trace[0].Length))

        rt = []
        tic = []
        for i in range(trace[0].Length):
            # print(trace[0].HasBasePeakData,trace[0].EndTime )

            # print("  {} - {}, {}".format( i, trace[0].Times[i], trace[0].Intensities[i] ))
            rt.append(trace[0].Times[i])
            tic.append(trace[0].Intensities[i])
        plot_chroma(rt, tic)
        plt.show()
예제 #4
0
파일: LC_Class.py 프로젝트: hechth/CoreMS
    def get_eics(self, tic_data: dict, ms_type='MS !d', 
                 peak_detection=True, smooth=True, plot=False, 
                 ax=None, legend=False) -> Tuple[Dict[float, EIC_Data], axes.Axes]:

        '''ms_type: str ('MS', MS2')
        start_scan: int default -1 will select the lowest available
        end_scan: int default -1 will select the highest available

        returns:

            chroma: dict{target_mz: EIC_Data(
                                        Scans: [int]
                                            original thermo scan numbers
                                        Time: [floats]
                                            list of retention times
                                        TIC: [floats]
                                            total ion chromatogram
                                        Apexes: [int]    
                                            original thermo apex scan number after peak picking 
                                        )
                                        
        '''
        target_mzs = self._parser.selected_mzs
        
        options = MassOptions()
        options.ToleranceUnits = ToleranceUnits.ppm
        options.Tolerance = self.chromatogram_settings.eic_tolerance_ppm

        all_chroma_settings = []

        for target_mz in target_mzs:

            settings = ChromatogramTraceSettings(TraceType.MassRange)
            settings.Filter = ms_type
            settings.MassRanges = [Range(target_mz, target_mz)]

            chroma_settings = IChromatogramSettings(settings)

            all_chroma_settings.append(chroma_settings)

        # chroma_settings2 = IChromatogramSettings(settings)
        # print(chroma_settings.FragmentMass)
        # print(chroma_settings.FragmentMass)
        # print(chroma_settings)
        # print(chroma_settings)

        data = self._parser.iRawDataPlus.GetChromatogramData(all_chroma_settings,
                                                     self.chromatogram_settings.start_scan, self.chromatogram_settings.end_scan, options)

        traces = ChromatogramSignal.FromChromatogramData(data)

        chroma = {}    
       
        if plot:
            from matplotlib.transforms import Bbox
            import matplotlib.pyplot as plt
            if not ax:
                # ax = plt.gca()
                # ax.clear()
                fig, ax = plt.subplots()
                
            else:
                fig = plt.gcf()    

                
            # plt.show()
        
        for i, trace in enumerate(traces):
            if trace.Length > 0:
                rt, eic, scans  = self._parser.get_rt_time_from_trace(trace)
                if smooth:
                    eic= self.smooth_tic(eic)
    
                chroma[target_mzs[i]] = EIC_Data(scans=scans, time=rt, eic= eic)
                if plot:
                    ax.plot(rt, eic, label="{:.5f}".format(target_mzs[i]))
            
        if peak_detection:
            
            #max_eic = self.get_max_eic(chroma)
            max_signal = max(tic_data.tic)
            
            for eic_data in chroma.values():
               
                eic = eic_data.eic
                time = eic_data.time

                if len(eic) != len(tic_data.tic):
                    logging.warn("The software assumes same lenth of TIC and EIC, this does not seems to be the case and the results mass spectrum selected by the scan number might not be correct")
                
                centroid_eics = self.eic_centroid_detector(time, eic, max_signal)
                eic_data.apexes = [i for i in centroid_eics]
                
                if plot:
                    for peak_indexes in eic_data.apexes:
                        
                        apex_index = peak_indexes[1]
                        ax.plot(time[apex_index], eic[apex_index], marker='x', linewidth=0)

        if plot:
            
            ax.set_xlabel('Time (min)')
            ax.set_ylabel('a.u.')
            ax.set_title(ms_type + ' EIC')
            ax.tick_params(axis='both', which='major', labelsize=12)
            ax.axes.spines['top'].set_visible(False)
            ax.axes.spines['right'].set_visible(False)

            if legend:
                legend = ax.legend(loc="upper left", bbox_to_anchor=(1.02, 0, 0.07, 1))
                fig.subplots_adjust(right=0.76)
                #ax.set_prop_cycle(color=plt.cm.gist_rainbow(np.linspace(0, 1, len(traces))))

                d = {"down": 30, "up": -30}
                def func(evt):
                    if legend.contains(evt):
                        bbox = legend.get_bbox_to_anchor()
                        bbox = Bbox.from_bounds(bbox.x0, bbox.y0 + d[evt.button], bbox.width, bbox.height)
                        tr = legend.axes.transAxes.inverted()
                        legend.set_bbox_to_anchor(bbox.transformed(tr))
                        fig.canvas.draw_idle()

                fig.canvas.mpl_connect("scroll_event", func)    
            return chroma, ax
        else:
            return chroma, None     
            rt = []
            tic = []
            scans = []
            for i in range(traces[0].Length):
                # print(trace[0].HasBasePeakData,trace[0].EndTime )

                # print("  {} - {}, {}".format( i, trace[0].Times[i], trace[0].Intensities[i] ))
                rt.append(traces[0].Times[i])
                tic.append(traces[0].Intensities[i])
                scans.append(traces[0].Scans[i])

            return traces
예제 #5
0
파일: LC_Class.py 프로젝트: hechth/CoreMS
    def get_tic(self, ms_type='MS !d', peak_detection=True, 
                smooth=True, plot=False, ax=None) -> Tuple[ TIC_Data, axes.Axes]:

        '''ms_type: str ('MS', MS2')
        start_scan: int default -1 will select the lowest available
        end_scan: int default -1 will select the highest available
        returns:
            chroma: dict
            {
            Scan: [int]
                original thermo scan numberMS
            Time: [floats]
                list of retention times
            TIC: [floats]
                total ion chromatogram
            Apexes: [int]    
                original thermo apex scan number after peak picking     
            }
        '''

        settings = ChromatogramTraceSettings(TraceType.TIC)
        settings.Filter = ms_type

        chroma_settings = IChromatogramSettings(settings)

        data = self._parser.iRawDataPlus.GetChromatogramData([chroma_settings],
                                                     self.parameters.lc_ms.start_scan, self.parameters.lc_ms.end_scan)

        trace = ChromatogramSignal.FromChromatogramData(data)
        
        data = TIC_Data(time= [], scans= [], tic= [], apexes= [])

        if trace[0].Length > 0:

            for i in range(trace[0].Length):
                # print(trace[0].HasBasePeakData,trace[0].EndTime )
                
                # print("  {} - {}, {}".format( i, trace[0].Times[i], trace[0].Intensities[i] ))
                data.time.append(trace[0].Times[i])
                data.tic.append(trace[0].Intensities[i])
                data.scans.append(trace[0].Scans[i])

                #print(trace[0].Scans[i])
            if smooth:
                
                data.tic= self.smooth_tic(data.tic)

            else:
                
                data.tic= np.array(data.tic)

            if peak_detection:
                
                centroid_peak_indexes = [i for i in self.centroid_detector(data.time, data.tic)]
                data.apexes = centroid_peak_indexes

            if plot:
                if not ax:
                    import matplotlib.pyplot as plt
                    ax = plt.gca()
                    # fig, ax = plt.subplots(figsize=(6, 3))

                ax.plot(data.time, data.tic, label=' TIC')    
                ax.set_xlabel('Time (min)')
                ax.set_ylabel('a.u.')
                if peak_detection:
                    for peak_indexes in data.apexes:
                        
                        apex_index = peak_indexes[1]
                        ax.plot(data.time[apex_index], data.tic[apex_index], marker='x', linewidth=0)
                    
                
                # plt.show()
                return data, ax
            
            return data, None

        else:
            return None, None