def __init__(self, sync_directory, classifier_name, mode): ### Step 1: filename management ### print_inner_status("Initialization", "Looking at file " + sync_directory) self.jvid_filename_raw = os.path.join(sync_directory, 'Raw/video.jvid') self.jvid_filename_pops_marked = os.path.join(sync_directory, 'Marked/video.jvid') self.jvid_filename_synchronized = os.path.join(sync_directory, 'Synced/video.jvid') ### Step 2: get the original skeletons ### print_inner_status("Initialization", "Getting input skeletons") self.original_skeletons = read_in_skeletons(self.jvid_filename_raw) ### Step 3: add derivatives to them ### print_inner_status("Initialization", "Adding derivatives to skeletons") self.original_skeletons = add_derivatives_to_skeletons( self.original_skeletons, 5, 10, 5, 10) ### Step 4: set up the classifier filename ### self.classifier_filename = os.path.join( os.getcwd(), 'python_backend/classifiers/' + classifier_name) ### Step 5.0: if synchronize mode, load the classifier and mark probabilities ### if mode == 'synchronize': print_inner_status("Initialization", "Loading the classifier") self.load_classifier( '/Users/jhack/Programming/NI/ni_template/python_backend/classifiers/toprock_front_training.obj' ) print_inner_status("Initialization", "Adding pop probabilities to skeletons") self.original_skeletons = mark_pop_probabilities( self.original_skeletons, self.classifier) ### Step 5.1: if train mode, train the classifier and save it ### elif mode == 'train': print_inner_status("Initialization", "Training the classifier") self.train_classifier() print_inner_status("Initialization", "Saving the classifier") self.save_classifier() return
def __init__ (self, sync_directory, classifier_name, mode): ### Step 1: filename management ### print_inner_status ("Initialization", "Looking at file " + sync_directory) self.jvid_filename_raw = os.path.join(sync_directory, 'Raw/video.jvid') self.jvid_filename_pops_marked = os.path.join(sync_directory, 'Marked/video.jvid') self.jvid_filename_synchronized = os.path.join(sync_directory, 'Synced/video.jvid') ### Step 2: get the original skeletons ### print_inner_status ("Initialization", "Getting input skeletons") self.original_skeletons = read_in_skeletons (self.jvid_filename_raw) ### Step 3: add derivatives to them ### print_inner_status ("Initialization", "Adding derivatives to skeletons") self.original_skeletons = add_derivatives_to_skeletons(self.original_skeletons, 5, 10, 5, 10) ### Step 4: set up the classifier filename ### self.classifier_filename = os.path.join (os.getcwd(), 'python_backend/classifiers/' + classifier_name) ### Step 5.0: if synchronize mode, load the classifier and mark probabilities ### if mode == 'synchronize': print_inner_status ("Initialization", "Loading the classifier") self.load_classifier ('/Users/jhack/Programming/NI/ni_template/python_backend/classifiers/toprock_front_training.obj') print_inner_status ("Initialization", "Adding pop probabilities to skeletons") self.original_skeletons = mark_pop_probabilities (self.original_skeletons, self.classifier) ### Step 5.1: if train mode, train the classifier and save it ### elif mode == 'train': print_inner_status ("Initialization", "Training the classifier") self.train_classifier () print_inner_status ("Initialization", "Saving the classifier") self.save_classifier () return
def __init__ (self, sync_directory, classifier_name): ### Step 1: filename management ### print_inner_status ("Initialization", "Looking at file " + sync_directory) self.jvid_filename_raw = os.path.join(sync_directory, 'Raw/video.jvid') self.jvid_filename_pops_marked = os.path.join(sync_directory, 'Marked/video.jvid') self.jvid_filename_synchronized = os.path.join(sync_directory, 'Synced/video.jvid') ### Step 2: load the classifier ### print_inner_status ("Initialization", "Unpickling the classifier") self.classifier = pickle.load (open('/Users/jhack/Programming/NI/ni_template/python_backend/classifiers/toprock_front_training.obj', 'r')) ### Step 2: get the original skeletons ### print_inner_status ("Initialization", "Getting input skeletons") self.original_skeletons = read_in_skeletons (self.jvid_filename_raw) ### Step 3: add derivatives to them ### print_inner_status ("Initialization", "Adding derivatives to skeletons") self.original_skeletons = add_derivatives_to_skeletons(self.original_skeletons, 5, 10, 5, 10) ### Step 4: add pop probabilities to them ### print_inner_status ("Initialization", "Adding pop probabilities to skeletons") self.original_skeletons = mark_pop_probabilities (self.original_skeletons, self.classifier)