def run_evaluator_on_latest_model(dataset, config): config = configurations_qa[config](dataset) latest_model = get_latest_model( os.path.join(config["training"]["basepath"], config["training"]["exp_dirname"])) evaluator = Evaluator(dataset, latest_model) _ = evaluator.evaluate(dataset.test_data, save_results=True) return evaluator
def generate_graphs_on_latest_model(dataset, config): config = configurations_qa[config](dataset) latest_model = get_latest_model(os.path.join(config["training"]["basepath"], config["training"]["exp_dirname"])) if latest_model is not None: evaluator = Evaluator(dataset, latest_model) _ = evaluator.evaluate(dataset.test_data, save_results=True, is_embds=False) print('outside eval') generate_graphs(dataset, config["training"]["exp_dirname"], evaluator.model, test_data=dataset.test_data)
def train_dataset_and_get_atn_map(dataset, encoders, num_iters=15): for e in encoders: config = configurations_qa[e](dataset) trainer = Trainer(dataset, config=config, _type=dataset.trainer_type) trainer.train(dataset.train_data, dataset.dev_data, n_iters=num_iters, save_on_metric=dataset.save_on_metric) # Get train losses as well? evaluator = Evaluator(dataset, trainer.model.dirname) _, attentions, scores = evaluator.evaluate(dataset.test_data, save_results=True) return scores, attentions
def train_dataset(dataset, config): try: config = configurations_qa[config](dataset) n_iters = dataset.n_iters if hasattr(dataset, "n_iters") else 25 trainer = Trainer(dataset, config=config, _type=dataset.trainer_type) trainer.train(dataset.train_data, dataset.dev_data, n_iters=n_iters, save_on_metric=dataset.save_on_metric) evaluator = Evaluator(dataset, trainer.model.dirname) _ = evaluator.evaluate(dataset.test_data, save_results=True) return trainer, evaluator except Exception as e: print(e) return
def generate_graphs_on_latest_model(dataset, config): try: config = configurations_qa[config](dataset) latest_model = get_latest_model( os.path.join(config['training']['basepath'], config['training']['exp_dirname'])) if latest_model is not None: evaluator = Evaluator(dataset, latest_model) _ = evaluator.evaluate(dataset.test_data, save_results=True) generate_graphs(dataset, config['training']['exp_dirname'], evaluator.model, test_data=dataset.test_data) except: return
def generate_graphs_on_latest_model(dataset, config): print("GENERATING GRAPHS FOR EXPERIMENT ON LATEST MODEL") config = configurations_qa[config](dataset) latest_model = get_latest_model( os.path.join(config["training"]["basepath"], config["training"]["exp_dirname"])) if latest_model is not None: evaluator = Evaluator(dataset, latest_model) _ = evaluator.evaluate(dataset.test_data, save_results=True, is_embds=False) print("outside eval") generate_graphs( dataset, config["training"]["exp_dirname"], evaluator.model, test_data=dataset.test_data, )