def configureSearch(id_tweet): print("ConfigureSearch: " + str(id_tweet)) now = datetime.datetime.now() datefortweet = datetime.date(now.year, now.month, now.day) twSOrder = TwitterSearchOrder() # create a TwitterSearchOrder object #twSOrder.set_keywords(['from:YodaBotter', 'to:YodaBotter'], or_operator = True) twSOrder.add_keyword("#AWSNinja") #twSOrder.set_language('en') # we want to see English tweets only twSOrder.set_include_entities(True) # and get all the entities incl. Media print("Search: " + twSOrder.create_search_url()) twSOrder.set_since(datefortweet) return twSOrder
def process(self, uri, scrape, last_check, task): """ Implement processing of a URI to get Twitter events. Args: uri (Uri): An Uri object. scrape (Scrape): Scrape from ORM, not saved to database (yet). last_check (datetime): when this uri was last successfully scraped. task (object): Celery task running this plugin. Returns: dict: new Event objects. """ self.assess_timeout(task) if not self.client: self.client = self.instantiate_client() self._add_validator_context(uri_id=uri.id, origin=self.origin.value, provider=self.provider.value, scrape_id=scrape.id) tw_search_order = TwitterSearchOrder() ''' What needs to be done here would be along the lines of keywords = [f'"url:{url.url}"' for url in uri.urls] + [f'"{uri.raw}"'] for keyword in keywords: # as a new task tw_search_order.set_keywords([keyword]) # then run search and process results as currently done for the # 'just doi' search shown below. ''' tw_search_order.set_keywords([f'"{uri.raw}"']) tw_search_order.set_include_entities(False) # `True` for retweet info. if last_check: tw_search_order.set_since = last_check.date() results_generator = self.rate_limited_search(tw_search_order, task) event_data = self._validate(results_generator) events = self._build( event_data=event_data, uri_id=uri.id, ) self.log_new_events(uri, self.origin, self.provider, events) return events
def twitter_search(params, start_time): """ Retrieves most recent tweets since yesterday based on keywords. Retrieves as many tweets as api gives, up to the maximum set by max_tweets. :param params: The keywords to search for, formatted as list of strings. To search for a url, use this syntax: "url:\"gizmodo com\"" in which the domain is separated by spaces instead of dots and the internal quotes are escaped with backspaces. :return: Returns list of dicts containing: - tweets: the number of tweets, since yesterday, about the specified keywords (up to a maximum count of max_tweets) - tweets_followers: the number of (unique) followers of those tweets (i.e., if the same person tweets ten times in one day, that person's followers are counted once, not ten times). - most_followed_name: the name of the tweeter who tweeted in 'tweets' (above) who has the most followers - most_followed_count: the count of the number of followers who follow the tweeter with the most followers """ print('starting twitter_search') # Set up flow control variables. max_tweets = 10000 # maximum number of tweets to retrieve from api more_tweets = True # are there more tweets to retrieve? need_to_sleep = False # tells to sleep (if approaching api rate limit) error = 'ok' try: # create TwitterSearch object using this app's tokens. ts = TwitterSearch( consumer_key=tw.CONSUMER_KEY, consumer_secret=tw.CONSUMER_SECRET, access_token=tw.ACCESS_TOKEN, access_token_secret=tw.ACCESS_TOKEN_SECRET ) # Create a TwitterSearchOrder object and add keywords to it. tso = TwitterSearchOrder() for param in params: tso.add_keyword(param) # Only search for tweets since yesterday (in UTC). yesterday = datetime.datetime.utcnow().date() - datetime.timedelta(1) tso.set_since(yesterday) # Set up counter variables. tweets = 0 # count of tweets about keywords, since yesterday unique_tweeters = {} # dict of unique tweeters about keywords tweets_followers = 0 # count of followers of unique_tweeters min_id = 0 # next tweet for paginated results, when multiple api calls max_followers = (0, 'null') # the tweeter with the most followers # Keep calling the api (for paginated results) until there are no # more tweets to retrieve, or until max_tweets limit has been reached. while more_tweets and tweets < max_tweets: # Sleep for 60 seconds, if needed, to avoid hitting api limit. if need_to_sleep: print("rate limit:", rate_limit) time.sleep(60) # Call the search api. response = ts.search_tweets(tso) # Are there no more tweets to retrieve? if len(response["content"]["statuses"]) == 0: more_tweets = False else: # there are more tweets to retrieve # Iterate through the batch of tweets retrieved from this # api call. Count the tweet and track all the unique tweeters. for tweet in response["content"]["statuses"]: if tweets > max_tweets: break # stop counting/tracking if reached max_tweets tweets += 1 if (min_id == 0) or (tweet["id"] < min_id): # Set min_id to the id of this tweet. The api returns # tweets in reverse chronological order (most recent is # first), so min_id is a lowering "ceiling" of which # tweet id to start from during subsequent api call. min_id = tweet["id"] # Can uncomment the following lines to see who is tweeting. # print(str(tweets) + "\t" + str(tweet["id"]) # + "\t" + tweet["user"]["screen_name"] # + "\t" + str(tweet["user"]["followers_count"])) if tweet["user"]["screen_name"] not in unique_tweeters: tweeter = tweet["user"]["screen_name"] tweeters_followers = tweet["user"]["followers_count"] # Add tweet's screen_name and followers_count to # unique_tweeters, iff this is first time seeing # this screen_name. unique_tweeters[tweeter] = tweeters_followers # Set the next paginated result's start point (subtract one # to avoid retrieving the last tweet from this batch twice). tso.set_max_id(min_id - 1) # If less than 15 api calls remaining then sleep during next loop. # (Search api free tier allows 180 calls per 15 minute period.) rate_limit = int(ts.get_metadata()["x-rate-limit-remaining"]) if rate_limit < 15: need_to_sleep = True else: need_to_sleep = False # After all tweets have been retrieved (up to max_tweets), calculate # metrics on the followers of the tweeters in unique_tweeters. for tweeter in unique_tweeters: # Count how many followers there are in all the unique_tweeters. tweets_followers += unique_tweeters[tweeter] # Determine which tweeter from unique_tweeters has most followers. if unique_tweeters[tweeter] > max_followers[0]: max_followers = (unique_tweeters[tweeter], tweeter) except TwitterSearchException as e: tweets = None tweets_followers = None error = format_exception(ValueError, e, e.__traceback__) tweets = make_dict( value=tweets, data_name='tweets', start_time=start_time, status=error ) tweets_followers = make_dict( value=tweets_followers, data_name='tweets_followers', start_time=start_time, status=error ) most_followed_name = make_dict( value=escape(max_followers[1], True), data_name='most_followed_name', start_time=start_time, status=error ) most_followed_count = make_dict( value=max_followers[0], data_name='most_followed_count', start_time=start_time, status=error ) return [tweets, tweets_followers, most_followed_name, most_followed_count]