# Exponential correlation model are used. # %% regression_model = ConstantRegression() kernel = Matern(nu=0.5) from UQpy.utilities.MinimizeOptimizer import MinimizeOptimizer optimizer = MinimizeOptimizer(method="L-BFGS-B") K = GaussianProcessRegression(regression_model=regression_model, optimizer=optimizer, kernel=kernel, optimizations_number=20, hyperparameters=[1, 1, 0.1]) K.fit(samples=x.samples, values=rmodel.qoi_list) print(K.hyperparameters) # %% md # # This plot shows the actual model which is used to evaluate the samples to identify the function values. # %% num = 25 x1 = np.linspace(0, 1, num) x2 = np.linspace(0, 1, num) x1g, x2g = np.meshgrid(x1, x2) x1gv, x2gv = x1g.reshape(x1g.size, 1), x2g.reshape(x2g.size, 1)
# %% gpr2 = GaussianProcessRegression(kernel=kernel2, hyperparameters=[1, 1, 0.1], optimizer=optimizer2, optimizations_number=10, noise=True, regression_model=LinearRegression()) # %% md # # Call the 'fit' method to train the surrogate model (GPR). # %% gpr2.fit(X_train, y_train) # %% md # # The maximum likelihood estimates of the hyperparameters are as follows: # %% print(gpr2.hyperparameters) print('Length Scale: ', gpr2.hyperparameters[0]) print('Process Variance: ', gpr2.hyperparameters[1]) print('Noise Variance: ', gpr2.hyperparameters[2]) # %% md #
# %% gpr1 = GaussianProcessRegression(kernel=kernel1, hyperparameters=[10**(-3), 10**(-2)], optimizer=optimizer1, optimizations_number=10, noise=False, regression_model=LinearRegression()) # %% md # # Call the 'fit' method to train the surrogate model (GPR). # %% gpr1.fit(X_train, y_train) # %% md # # The maximum likelihood estimates of the hyperparameters are as follows: # %% gpr1.hyperparameters print('Length Scale: ', gpr1.hyperparameters[0]) print('Process Variance: ', gpr1.hyperparameters[1]) # %% md # # Use 'predict' method to compute surrogate prediction at the test samples. The attribute 'return_std' is a boolean
kernel=kernel3, hyperparameters=[10**(-3), 10**(-2), 10**(-10)], optimizer=optimizer3, optimizations_number=10, optimize_constraints=cons, bounds=bounds_3, noise=True, regression_model=QuadraticRegression()) # %% md # # Call the 'fit' method to train the surrogate model (GPR). # %% gpr3.fit(X_train, y_train) # %% md # # The maximum likelihood estimates of the hyperparameters are as follows: # %% print(gpr3.hyperparameters) print('Length Scale: ', gpr3.hyperparameters[0]) print('Process Variance: ', gpr3.hyperparameters[1]) print('Noise Variance: ', gpr3.hyperparameters[2]) # %% md #