예제 #1
0
    def __init__(self, URM_train, ICM, S_matrix_target):

        super(CFW_D_Similarity_Linalg, self).__init__(URM_train)

        if (URM_train.shape[1] != ICM.shape[0]):
            raise ValueError(
                "Number of items not consistent. URM contains {} but ICM contains {}"
                .format(URM_train.shape[1], ICM.shape[0]))

        if (S_matrix_target.shape[0] != S_matrix_target.shape[1]):
            raise ValueError(
                "Items imilarity matrix is not square: rows are {}, columns are {}"
                .format(S_matrix_target.shape[0], S_matrix_target.shape[1]))

        if (S_matrix_target.shape[0] != ICM.shape[0]):
            raise ValueError(
                "Number of items not consistent. S_matrix contains {} but ICM contains {}"
                .format(S_matrix_target.shape[0], ICM.shape[0]))

        self.S_matrix_target = check_matrix(S_matrix_target, 'csr')
        self.ICM = check_matrix(ICM, 'csr')

        self.n_items = self.URM_train.shape[1]
        self.n_users = self.URM_train.shape[0]
        self.n_features = self.ICM.shape[1]

        self.sparse_weights = True
예제 #2
0
    def fit(self,
            topK=50,
            shrink=100,
            similarity='cosine',
            normalize=True,
            feature_weighting="none",
            **similarity_args):

        self.topK = topK
        self.shrink = shrink

        if feature_weighting not in self.FEATURE_WEIGHTING_VALUES:
            raise ValueError(
                "Value for 'feature_weighting' not recognized. Acceptable values are {}, provided was '{}'"
                .format(self.FEATURE_WEIGHTING_VALUES, feature_weighting))

        if feature_weighting == "BM25":
            self.URM_train = self.URM_train.astype(np.float32)
            self.URM_train = okapi_BM_25(self.URM_train.T).T
            self.URM_train = check_matrix(self.URM_train, 'csr')

        elif feature_weighting == "TF-IDF":
            self.URM_train = self.URM_train.astype(np.float32)
            self.URM_train = TF_IDF(self.URM_train.T).T
            self.URM_train = check_matrix(self.URM_train, 'csr')

        similarity = Compute_Similarity(self.URM_train.T,
                                        shrink=shrink,
                                        topK=topK,
                                        normalize=normalize,
                                        similarity=similarity,
                                        **similarity_args)

        self.W_sparse = similarity.compute_similarity()
        self.W_sparse = check_matrix(self.W_sparse, format='csr')
    def __init__(self, URM_train, Similarity_1, Similarity_2):
        super(ItemKNNSimilarityHybridRecommender, self).__init__(URM_train)

        if Similarity_1.shape != Similarity_2.shape:
            raise ValueError(
                "ItemKNNSimilarityHybridRecommender: similarities have different size, S1 is {}, S2 is {}"
                .format(Similarity_1.shape, Similarity_2.shape))

        # CSR is faster during evaluation
        self.Similarity_1 = check_matrix(Similarity_1.copy(), 'csr')
        self.Similarity_2 = check_matrix(Similarity_2.copy(), 'csr')
    def get_S_incremental_and_set_W(self):

        self.S_incremental = self.cythonEpoch.get_S()

        if self.train_with_sparse_weights:
            self.W_sparse = self.S_incremental
            self.W_sparse = check_matrix(self.W_sparse, format='csr')
        else:
            self.W_sparse = similarityMatrixTopK(self.S_incremental,
                                                 k=self.topK)
            self.W_sparse = check_matrix(self.W_sparse, format='csr')
    def fit(self, lambda_user=10, lambda_item=25):

        self.lambda_user = lambda_user
        self.lambda_item = lambda_item
        self.n_items = self.URM_train.shape[1]

        # convert to csc matrix for faster column-wise sum
        self.URM_train = check_matrix(self.URM_train, 'csc', dtype=np.float32)

        # 1) global average
        self.mu = self.URM_train.data.sum(
            dtype=np.float32) / self.URM_train.data.shape[0]

        # 2) item average bias
        # compute the number of non-zero elements for each column
        col_nnz = np.diff(self.URM_train.indptr)

        # it is equivalent to:
        # col_nnz = X.indptr[1:] - X.indptr[:-1]
        # and it is **much faster** than
        # col_nnz = (X != 0).sum(axis=0)

        URM_train_unbiased = self.URM_train.copy()
        URM_train_unbiased.data -= self.mu
        self.item_bias = URM_train_unbiased.sum(axis=0) / (col_nnz +
                                                           self.lambda_item)
        self.item_bias = np.asarray(self.item_bias).ravel(
        )  # converts 2-d matrix to 1-d array without anycopy

        # 3) user average bias
        # NOTE: the user bias is *useless* for the sake of ranking items. We just show it here for educational purposes.

        # first subtract the item biases from each column
        # then repeat each element of the item bias vector a number of times equal to col_nnz
        # and subtract it from the data vector
        URM_train_unbiased.data -= np.repeat(self.item_bias, col_nnz)

        # now convert the csc matrix to csr for efficient row-wise computation
        URM_train_unbiased_csr = URM_train_unbiased.tocsr()
        row_nnz = np.diff(URM_train_unbiased_csr.indptr)
        # finally, let's compute the bias
        self.user_bias = URM_train_unbiased_csr.sum(
            axis=1).ravel() / (row_nnz + self.lambda_user)

        # 4) precompute the item ranking by using the item bias only
        # the global average and user bias won't change the ranking, so there is no need to use them
        #self.item_ranking = np.argsort(self.bi)[::-1]

        self.URM_train = check_matrix(self.URM_train, 'csr', dtype=np.float32)
    def applyAdjustedCosine(self):
        """
        Remove from every data point the average for the corresponding row
        :return:
        """

        self.dataMatrix = check_matrix(self.dataMatrix, 'csr')

        interactionsPerRow = np.diff(self.dataMatrix.indptr)

        nonzeroRows = interactionsPerRow > 0
        sumPerRow = np.asarray(self.dataMatrix.sum(axis=1)).ravel()

        rowAverage = np.zeros_like(sumPerRow)
        rowAverage[nonzeroRows] = sumPerRow[nonzeroRows] / interactionsPerRow[
            nonzeroRows]

        # Split in blocks to avoid duplicating the whole data structure
        start_row = 0
        end_row = 0

        blockSize = 1000

        while end_row < self.n_rows:

            end_row = min(self.n_rows, end_row + blockSize)

            self.dataMatrix.data[self.dataMatrix.indptr[start_row]:self.dataMatrix.indptr[end_row]] -= \
                np.repeat(rowAverage[start_row:end_row], interactionsPerRow[start_row:end_row])

            start_row += blockSize
def remove_empty_rows_and_cols(URM, ICM=None):

    URM = check_matrix(URM, "csr")
    rows = URM.indptr
    numRatings = np.ediff1d(rows)
    user_mask = numRatings >= 1

    URM = URM[user_mask, :]

    cols = URM.tocsc().indptr
    numRatings = np.ediff1d(cols)
    item_mask = numRatings >= 1

    URM = URM[:, item_mask]

    removedUsers = np.arange(0, len(user_mask))[np.logical_not(user_mask)]
    removedItems = np.arange(0, len(item_mask))[np.logical_not(item_mask)]

    if ICM is not None:

        ICM = ICM[item_mask, :]

        return URM.tocsr(), ICM.tocsr(), removedUsers, removedItems

    return URM.tocsr(), removedUsers, removedItems
    def __init__(self, URM_train, verbose=True):

        super(BaseClassicRecommender, self).__init__()

        self.URM_train = check_matrix(URM_train.copy(),
                                      'csr',
                                      dtype=np.float32)
        self.URM_train.eliminate_zeros()

        self.n_users, self.n_items = self.URM_train.shape
        self.verbose = verbose

        self.filterTopPop = False
        self.filterTopPop_ItemsID = np.array([], dtype=np.int)

        self.items_to_ignore_flag = False
        self.items_to_ignore_ID = np.array([], dtype=np.int)

        self._cold_user_mask = np.ediff1d(self.URM_train.indptr) == 0

        if self._cold_user_mask.any():
            self._print("URM Detected {} ({:.2f} %) cold users.".format(
                self._cold_user_mask.sum(),
                self._cold_user_mask.sum() / self.n_users * 100))

        self._cold_item_mask = np.ediff1d(self.URM_train.tocsc().indptr) == 0

        if self._cold_item_mask.any():
            self._print("URM Detected {} ({:.2f} %) cold items.".format(
                self._cold_item_mask.sum(),
                self._cold_item_mask.sum() / self.n_items * 100))
    def applyPearsonCorrelation(self):
        """
        Remove from every data point the average for the corresponding column
        :return:
        """

        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')

        interactionsPerCol = np.diff(self.dataMatrix.indptr)

        nonzeroCols = interactionsPerCol > 0
        sumPerCol = np.asarray(self.dataMatrix.sum(axis=0)).ravel()

        colAverage = np.zeros_like(sumPerCol)
        colAverage[nonzeroCols] = sumPerCol[nonzeroCols] / interactionsPerCol[
            nonzeroCols]

        # Split in blocks to avoid duplicating the whole data structure
        start_col = 0
        end_col = 0

        blockSize = 1000

        while end_col < self.n_columns:

            end_col = min(self.n_columns, end_col + blockSize)

            self.dataMatrix.data[self.dataMatrix.indptr[start_col]:self.dataMatrix.indptr[end_col]] -= \
                np.repeat(colAverage[start_col:end_col], interactionsPerCol[start_col:end_col])

            start_col += blockSize
    def __init__(self, URM_recommendations_items):
        super(PredefinedListRecommender, self).__init__()

        # convert to csc matrix for faster column-wise sum
        self.URM_recommendations = check_matrix(URM_recommendations_items,
                                                'csr',
                                                dtype=np.int)

        self.URM_train = sps.csr_matrix((self.URM_recommendations.shape))
    def _build_confidence_matrix(self, confidence_scaling):

        if confidence_scaling == 'linear':
            self.C = self._linear_scaling_confidence()
        else:
            self.C = self._log_scaling_confidence()

        self.C_csc = check_matrix(self.C.copy(),
                                  format="csc",
                                  dtype=np.float32)
예제 #12
0
    def fit(self, topK=100, alpha=0.5):

        self.topK = topK
        self.alpha = alpha

        W_sparse = self.Similarity_1 * self.alpha + self.Similarity_2 * (
            1 - self.alpha)

        self.W_sparse = similarityMatrixTopK(W_sparse, k=self.topK)
        self.W_sparse = check_matrix(self.W_sparse, format='csr')
    def fit(self, W_sparse, selectTopK=False, topK=100):

        assert W_sparse.shape[0] == W_sparse.shape[1],\
            "ItemKNNCustomSimilarityRecommender: W_sparse matrice is not square. Current shape is {}".format(W_sparse.shape)

        assert self.URM_train.shape[1] == W_sparse.shape[0],\
            "ItemKNNCustomSimilarityRecommender: URM_train and W_sparse matrices are not consistent. " \
            "The number of columns in URM_train must be equal to the rows in W_sparse. " \
            "Current shapes are: URM_train {}, W_sparse {}".format(self.URM_train.shape, W_sparse.shape)

        if selectTopK:
            W_sparse = similarityMatrixTopK(W_sparse, k=topK)

        self.W_sparse = check_matrix(W_sparse, format='csr')
def removeFeatures(ICM,
                   minOccurrence=5,
                   maxPercOccurrence=0.30,
                   reconcile_mapper=None):
    """
    The function eliminates the values associated to feature occurring in less than the minimal percentage of items
    or more then the max. Shape of ICM is reduced deleting features.
    :param ICM:
    :param minPercOccurrence:
    :param maxPercOccurrence:
    :param reconcile_mapper: DICT mapper [token] -> index
    :return: ICM
    :return: deletedFeatures
    :return: DICT mapper [token] -> index
    """

    ICM = check_matrix(ICM, 'csc')

    n_items = ICM.shape[0]

    cols = ICM.indptr
    numOccurrences = np.ediff1d(cols)

    feature_mask = np.logical_and(
        numOccurrences >= minOccurrence,
        numOccurrences <= n_items * maxPercOccurrence)

    ICM = ICM[:, feature_mask]

    deletedFeatures = np.arange(
        0, len(feature_mask))[np.logical_not(feature_mask)]

    print(
        "RemoveFeatures: removed {} features with less then {} occurrencies, removed {} features with more than {} occurrencies"
        .format(sum(numOccurrences < minOccurrence), minOccurrence,
                sum(numOccurrences > n_items * maxPercOccurrence),
                int(n_items * maxPercOccurrence)))

    if reconcile_mapper is not None:
        reconcile_mapper = reconcile_mapper_with_removed_tokens(
            reconcile_mapper, deletedFeatures)

        return ICM, deletedFeatures, reconcile_mapper

    return ICM, deletedFeatures
예제 #15
0
    def fit(self,
            l1_ratio=0.1,
            positive_only=True,
            topK=100,
            workers=multiprocessing.cpu_count()):

        assert l1_ratio >= 0 and l1_ratio <= 1, "SLIM_ElasticNet: l1_ratio must be between 0 and 1, provided value was {}".format(
            l1_ratio)

        self.l1_ratio = l1_ratio
        self.positive_only = positive_only
        self.topK = topK

        self.workers = workers

        self.URM_train = check_matrix(self.URM_train, 'csc', dtype=np.float32)
        n_items = self.URM_train.shape[1]
        # fit item's factors in parallel

        #oggetto riferito alla funzione nel quale predefinisco parte dell'input
        _pfit = partial(self._partial_fit, X=self.URM_train, topK=self.topK)

        #creo un pool con un certo numero di processi
        pool = Pool(processes=self.workers)

        #avvio il pool passando la funzione (con la parte fissa dell'input)
        #e il rimanente parametro, variabile
        res = pool.map(_pfit, np.arange(n_items))

        # res contains a vector of (values, rows, cols) tuples
        values, rows, cols = [], [], []
        for values_, rows_, cols_ in res:
            values.extend(values_)
            rows.extend(rows_)
            cols.extend(cols_)

        # generate the sparse weight matrix
        self.W_sparse = sps.csr_matrix((values, (rows, cols)),
                                       shape=(n_items, n_items),
                                       dtype=np.float32)
    def _linear_scaling_confidence(self):

        C = check_matrix(self.URM_train, format="csr", dtype=np.float32)
        C.data = 1.0 + self.alpha * C.data

        return C
    def compute_similarity(self, start_col=None, end_col=None, block_size=100):
        """
        Compute the similarity for the given dataset
        :param self:
        :param start_col: column to begin with
        :param end_col: column to stop before, end_col is excluded
        :return:
        """

        values = []
        rows = []
        cols = []

        start_time = time.time()
        start_time_print_batch = start_time
        processedItems = 0

        if self.adjusted_cosine:
            self.applyAdjustedCosine()

        elif self.pearson_correlation:
            self.applyPearsonCorrelation()

        elif self.tanimoto_coefficient or self.dice_coefficient or self.tversky_coefficient:
            self.useOnlyBooleanInteractions()

        # We explore the matrix column-wise
        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')

        # Compute sum of squared values to be used in normalization
        sumOfSquared = np.array(self.dataMatrix.power(2).sum(axis=0)).ravel()

        # Tanimoto does not require the square root to be applied
        if not (self.tanimoto_coefficient or self.dice_coefficient
                or self.tversky_coefficient):
            sumOfSquared = np.sqrt(sumOfSquared)

        if self.asymmetric_cosine:
            sumOfSquared_to_1_minus_alpha = np.power(
                sumOfSquared, 2 * (1 - self.asymmetric_alpha))
            sumOfSquared_to_alpha = np.power(sumOfSquared,
                                             2 * self.asymmetric_alpha)

        self.dataMatrix = check_matrix(self.dataMatrix, 'csc')

        start_col_local = 0
        end_col_local = self.n_columns

        if start_col is not None and start_col > 0 and start_col < self.n_columns:
            start_col_local = start_col

        if end_col is not None and end_col > start_col_local and end_col < self.n_columns:
            end_col_local = end_col

        start_col_block = start_col_local

        this_block_size = 0

        # Compute all similarities for each item using vectorization
        while start_col_block < end_col_local:

            end_col_block = min(start_col_block + block_size, end_col_local)
            this_block_size = end_col_block - start_col_block

            # All data points for a given item
            item_data = self.dataMatrix[:, start_col_block:end_col_block]
            item_data = item_data.toarray().squeeze()

            # If only 1 feature avoid last dimension to disappear
            if item_data.ndim == 1:
                item_data = np.atleast_2d(item_data)

            if self.use_row_weights:
                this_block_weights = self.dataMatrix_weighted.T.dot(item_data)

            else:
                # Compute item similarities
                this_block_weights = self.dataMatrix.T.dot(item_data)

            for col_index_in_block in range(this_block_size):

                if this_block_size == 1:
                    this_column_weights = this_block_weights
                else:
                    this_column_weights = this_block_weights[:,
                                                             col_index_in_block]

                columnIndex = col_index_in_block + start_col_block
                this_column_weights[columnIndex] = 0.0

                # Apply normalization and shrinkage, ensure denominator != 0
                if self.normalize:

                    if self.asymmetric_cosine:
                        denominator = sumOfSquared_to_alpha[
                            columnIndex] * sumOfSquared_to_1_minus_alpha + self.shrink + 1e-6
                    else:
                        denominator = sumOfSquared[
                            columnIndex] * sumOfSquared + self.shrink + 1e-6

                    this_column_weights = np.multiply(this_column_weights,
                                                      1 / denominator)

                # Apply the specific denominator for Tanimoto
                elif self.tanimoto_coefficient:
                    denominator = sumOfSquared[
                        columnIndex] + sumOfSquared - this_column_weights + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights,
                                                      1 / denominator)

                elif self.dice_coefficient:
                    denominator = sumOfSquared[
                        columnIndex] + sumOfSquared + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights,
                                                      1 / denominator)

                elif self.tversky_coefficient:
                    denominator = this_column_weights + \
                                  (sumOfSquared[columnIndex] - this_column_weights)*self.tversky_alpha + \
                                  (sumOfSquared - this_column_weights)*self.tversky_beta + self.shrink + 1e-6
                    this_column_weights = np.multiply(this_column_weights,
                                                      1 / denominator)

                # If no normalization or tanimoto is selected, apply only shrink
                elif self.shrink != 0:
                    this_column_weights = this_column_weights / self.shrink

                #this_column_weights = this_column_weights.toarray().ravel()

                # Sort indices and select TopK
                # Sorting is done in three steps. Faster then plain np.argsort for higher number of items
                # - Partition the data to extract the set of relevant items
                # - Sort only the relevant items
                # - Get the original item index
                relevant_items_partition = (
                    -this_column_weights).argpartition(self.TopK -
                                                       1)[0:self.TopK]
                relevant_items_partition_sorting = np.argsort(
                    -this_column_weights[relevant_items_partition])
                top_k_idx = relevant_items_partition[
                    relevant_items_partition_sorting]

                # Incrementally build sparse matrix, do not add zeros
                notZerosMask = this_column_weights[top_k_idx] != 0.0
                numNotZeros = np.sum(notZerosMask)

                values.extend(this_column_weights[top_k_idx][notZerosMask])
                rows.extend(top_k_idx[notZerosMask])
                cols.extend(np.ones(numNotZeros) * columnIndex)

            # Add previous block size
            processedItems += this_block_size

            if time.time(
            ) - start_time_print_batch >= 30 or end_col_block == end_col_local:
                columnPerSec = processedItems / (time.time() - start_time +
                                                 1e-9)

                print(
                    "Similarity column {} ( {:2.0f} % ), {:.2f} column/sec, elapsed time {:.2f} min"
                    .format(
                        processedItems, processedItems /
                        (end_col_local - start_col_local) * 100, columnPerSec,
                        (time.time() - start_time) / 60))

                sys.stdout.flush()
                sys.stderr.flush()

                start_time_print_batch = time.time()

            start_col_block += block_size

        # End while on columns

        W_sparse = sps.csr_matrix((values, (rows, cols)),
                                  shape=(self.n_columns, self.n_columns),
                                  dtype=np.float32)

        return W_sparse
예제 #18
0
    def fit(self,
            topK=500,
            alpha=.5,
            min_rating=0,
            implicit=True,
            normalize_similarity=False):

        self.topK = topK
        self.alpha = alpha
        self.min_rating = min_rating
        self.implicit = implicit
        self.normalize_similarity = normalize_similarity

        #
        # if X.dtype != np.float32:
        #     print("P3ALPHA fit: For memory usage reasons, we suggest to use np.float32 as dtype for the dataset")

        if self.min_rating > 0:
            self.URM_train.data[self.URM_train.data < self.min_rating] = 0
            self.URM_train.eliminate_zeros()
            if self.implicit:
                self.URM_train.data = np.ones(self.URM_train.data.size,
                                              dtype=np.float32)

        # Pui is the row-normalized urm
        Pui = normalize(self.URM_train, norm='l1', axis=1)

        # Piu is the column-normalized, "boolean" urm transposed
        X_bool = self.URM_train.transpose(copy=True)
        X_bool.data = np.ones(X_bool.data.size, np.float32)
        # ATTENTION: axis is still 1 because i transposed before the normalization
        Piu = normalize(X_bool, norm='l1', axis=1)
        del (X_bool)

        # Alfa power
        if self.alpha != 1.:
            Pui = Pui.power(self.alpha)
            Piu = Piu.power(self.alpha)

        # Final matrix is computed as Pui * Piu * Pui
        # Multiplication unpacked for memory usage reasons
        block_dim = 200
        d_t = Piu

        # Use array as it reduces memory requirements compared to lists
        dataBlock = 10000000

        rows = np.zeros(dataBlock, dtype=np.int32)
        cols = np.zeros(dataBlock, dtype=np.int32)
        values = np.zeros(dataBlock, dtype=np.float32)

        numCells = 0

        start_time = time.time()
        start_time_printBatch = start_time

        for current_block_start_row in range(0, Pui.shape[1], block_dim):

            if current_block_start_row + block_dim > Pui.shape[1]:
                block_dim = Pui.shape[1] - current_block_start_row

            similarity_block = d_t[
                current_block_start_row:current_block_start_row +
                block_dim, :] * Pui
            similarity_block = similarity_block.toarray()

            for row_in_block in range(block_dim):
                row_data = similarity_block[row_in_block, :]
                row_data[current_block_start_row + row_in_block] = 0

                best = row_data.argsort()[::-1][:self.topK]

                notZerosMask = row_data[best] != 0.0

                values_to_add = row_data[best][notZerosMask]
                cols_to_add = best[notZerosMask]

                for index in range(len(values_to_add)):

                    if numCells == len(rows):
                        rows = np.concatenate(
                            (rows, np.zeros(dataBlock, dtype=np.int32)))
                        cols = np.concatenate(
                            (cols, np.zeros(dataBlock, dtype=np.int32)))
                        values = np.concatenate(
                            (values, np.zeros(dataBlock, dtype=np.float32)))

                    rows[numCells] = current_block_start_row + row_in_block
                    cols[numCells] = cols_to_add[index]
                    values[numCells] = values_to_add[index]

                    numCells += 1

            if time.time() - start_time_printBatch > 60:
                print(
                    "Processed {} ( {:.2f}% ) in {:.2f} minutes. Rows per second: {:.0f}"
                    .format(
                        current_block_start_row,
                        100.0 * float(current_block_start_row) / Pui.shape[1],
                        (time.time() - start_time) / 60,
                        float(current_block_start_row) /
                        (time.time() - start_time)))

                sys.stdout.flush()
                sys.stderr.flush()

                start_time_printBatch = time.time()

        self.W_sparse = sps.csr_matrix(
            (values[:numCells], (rows[:numCells], cols[:numCells])),
            shape=(Pui.shape[1], Pui.shape[1]))

        if self.normalize_similarity:
            self.W_sparse = normalize(self.W_sparse, norm='l1', axis=1)

        if self.topK != False:
            self.W_sparse = similarityMatrixTopK(self.W_sparse, k=self.topK)

        self.W_sparse = check_matrix(self.W_sparse, format='csr')

        self.recs = self.URM_train.dot(self.W_sparse)
예제 #19
0
    def set_URM_train(self,
                      URM_train_new,
                      estimate_model_for_cold_users=False,
                      topK=100,
                      **kwargs):
        """

        :param URM_train_new:
        :param estimate_item_similarity_for_cold_users: Set to TRUE if you want to estimate the item-item similarity for cold users to be used as in a KNN algorithm
        :param topK: 100
        :param kwargs:
        :return:
        """

        assert self.URM_train.shape == URM_train_new.shape, "{}: set_URM_train old and new URM train have different shapes".format(
            self.RECOMMENDER_NAME)

        if len(kwargs) > 0:
            print(
                "{}: set_URM_train keyword arguments not supported for this recommender class. Received: {}"
                .format(self.RECOMMENDER_NAME, kwargs))

        self.URM_train = check_matrix(URM_train_new.copy(),
                                      'csr',
                                      dtype=np.float32)
        self.URM_train.eliminate_zeros()

        if estimate_model_for_cold_users == "itemKNN":

            print("{}: Estimating ItemKNN model from ITEM latent factors...".
                  format(self.RECOMMENDER_NAME))

            W_sparse = compute_W_sparse_from_item_latent_factors(
                self.ITEM_factors, topK=topK)

            self._ItemKNNRecommender = ItemKNNCustomSimilarityRecommender(
                self.URM_train)
            self._ItemKNNRecommender.fit(W_sparse, topK=topK)

            self._cold_user_KNN_model_available = True
            self._warm_user_KNN_mask = np.ediff1d(self.URM_train.indptr) > 0

            print(
                "{}: Estimating ItemKNN model from ITEM latent factors... done!"
                .format(self.RECOMMENDER_NAME))

        elif estimate_model_for_cold_users == "mean_item_factors":

            print(
                "{}: Estimating USER latent factors from ITEM latent factors..."
                .format(self.RECOMMENDER_NAME))

            self._cold_user_mask = np.ediff1d(self.URM_train.indptr) == 0

            profile_length = np.ediff1d(self.URM_train.indptr)
            profile_length_sqrt = np.sqrt(profile_length)

            self.USER_factors = self.URM_train.dot(self.ITEM_factors)

            #Divide every row for the sqrt of the profile length
            for user_index in range(self.n_users):

                if profile_length_sqrt[user_index] > 0:

                    self.USER_factors[
                        user_index, :] /= profile_length_sqrt[user_index]

            print(
                "{}: Estimating USER latent factors from ITEM latent factors... done!"
                .format(self.RECOMMENDER_NAME))
    def _log_scaling_confidence(self):

        C = check_matrix(self.URM_train, format="csr", dtype=np.float32)
        C.data = 1.0 + self.alpha * np.log(1.0 + C.data / self.epsilon)

        return C
예제 #21
0
    def fit(self,
            l1_ratio=0.1,
            alpha=1.0,
            positive_only=True,
            topK=100,
            verbose=True):

        assert l1_ratio >= 0 and l1_ratio <= 1, "{}: l1_ratio must be between 0 and 1, provided value was {}".format(
            self.RECOMMENDER_NAME, l1_ratio)

        self.l1_ratio = l1_ratio
        self.positive_only = positive_only
        self.topK = topK

        # initialize the ElasticNet model
        self.model = ElasticNet(alpha=alpha,
                                l1_ratio=self.l1_ratio,
                                positive=self.positive_only,
                                fit_intercept=False,
                                copy_X=False,
                                precompute=True,
                                selection='random',
                                max_iter=100,
                                tol=1e-4)

        URM_train = check_matrix(self.URM_train, 'csc', dtype=np.float32)

        n_items = URM_train.shape[1]

        # Use array as it reduces memory requirements compared to lists
        dataBlock = 10000000

        rows = np.zeros(dataBlock, dtype=np.int32)
        cols = np.zeros(dataBlock, dtype=np.int32)
        values = np.zeros(dataBlock, dtype=np.float32)

        numCells = 0

        start_time = time.time()
        start_time_printBatch = start_time

        # fit each item's factors sequentially (not in parallel)
        for currentItem in range(n_items):

            # get the target column
            y = URM_train[:, currentItem].toarray()

            # set the j-th column of X to zero
            start_pos = URM_train.indptr[currentItem]
            end_pos = URM_train.indptr[currentItem + 1]

            current_item_data_backup = URM_train.data[start_pos:end_pos].copy()
            URM_train.data[start_pos:end_pos] = 0.0

            # fit one ElasticNet model per column
            self.model.fit(URM_train, y)

            # self.model.coef_ contains the coefficient of the ElasticNet model
            # let's keep only the non-zero values

            # Select topK values
            # Sorting is done in three steps. Faster then plain np.argsort for higher number of items
            # - Partition the data to extract the set of relevant items
            # - Sort only the relevant items
            # - Get the original item index

            # nonzero_model_coef_index = self.model.coef_.nonzero()[0]
            # nonzero_model_coef_value = self.model.coef_[nonzero_model_coef_index]

            nonzero_model_coef_index = self.model.sparse_coef_.indices
            nonzero_model_coef_value = self.model.sparse_coef_.data

            local_topK = min(len(nonzero_model_coef_value) - 1, self.topK)

            relevant_items_partition = (
                -nonzero_model_coef_value
            ).argpartition(local_topK)[0:local_topK]
            relevant_items_partition_sorting = np.argsort(
                -nonzero_model_coef_value[relevant_items_partition])
            ranking = relevant_items_partition[
                relevant_items_partition_sorting]

            for index in range(len(ranking)):

                if numCells == len(rows):
                    rows = np.concatenate(
                        (rows, np.zeros(dataBlock, dtype=np.int32)))
                    cols = np.concatenate(
                        (cols, np.zeros(dataBlock, dtype=np.int32)))
                    values = np.concatenate(
                        (values, np.zeros(dataBlock, dtype=np.float32)))

                rows[numCells] = nonzero_model_coef_index[ranking[index]]
                cols[numCells] = currentItem
                values[numCells] = nonzero_model_coef_value[ranking[index]]

                numCells += 1

            # finally, replace the original values of the j-th column
            URM_train.data[start_pos:end_pos] = current_item_data_backup

            if verbose and (time.time() - start_time_printBatch > 300
                            or currentItem == n_items - 1):
                print(
                    "{}: Processed {} ( {:.2f}% ) in {:.2f} minutes. Items per second: {:.0f}"
                    .format(self.RECOMMENDER_NAME, currentItem + 1,
                            100.0 * float(currentItem + 1) / n_items,
                            (time.time() - start_time) / 60,
                            float(currentItem) / (time.time() - start_time)))

                sys.stdout.flush()
                sys.stderr.flush()

                start_time_printBatch = time.time()

        # generate the sparse weight matrix
        self.W_sparse = sps.csr_matrix(
            (values[:numCells], (rows[:numCells], cols[:numCells])),
            shape=(n_items, n_items),
            dtype=np.float32)
예제 #22
0
    def _generateTrainData_low_ram(self):

        print(self.RECOMMENDER_NAME + ": Generating train data")

        start_time_batch = time.time()

        # Here is important only the structure
        self.similarity = Compute_Similarity(self.ICM.T,
                                             shrink=0,
                                             topK=self.topK,
                                             normalize=False)
        S_matrix_contentKNN = self.similarity.compute_similarity()
        S_matrix_contentKNN = check_matrix(S_matrix_contentKNN, "csr")

        self._writeLog(
            self.RECOMMENDER_NAME +
            ": Collaborative S density: {:.2E}, nonzero cells {}".format(
                self.S_matrix_target.nnz /
                self.S_matrix_target.shape[0]**2, self.S_matrix_target.nnz))

        self._writeLog(
            self.RECOMMENDER_NAME +
            ": Content S density: {:.2E}, nonzero cells {}".format(
                S_matrix_contentKNN.nnz /
                S_matrix_contentKNN.shape[0]**2, S_matrix_contentKNN.nnz))

        if self.normalize_similarity:

            # Compute sum of squared
            sum_of_squared_features = np.array(
                self.ICM.T.power(2).sum(axis=0)).ravel()
            sum_of_squared_features = np.sqrt(sum_of_squared_features)

        num_common_coordinates = 0

        estimated_n_samples = int(S_matrix_contentKNN.nnz *
                                  (1 + self.add_zeros_quota) * 1.2)

        self.row_list = np.zeros(estimated_n_samples, dtype=np.int32)
        self.col_list = np.zeros(estimated_n_samples, dtype=np.int32)
        self.data_list = np.zeros(estimated_n_samples, dtype=np.float64)

        num_samples = 0

        for row_index in range(self.n_items):

            start_pos_content = S_matrix_contentKNN.indptr[row_index]
            end_pos_content = S_matrix_contentKNN.indptr[row_index + 1]

            content_coordinates = S_matrix_contentKNN.indices[
                start_pos_content:end_pos_content]

            start_pos_target = self.S_matrix_target.indptr[row_index]
            end_pos_target = self.S_matrix_target.indptr[row_index + 1]

            target_coordinates = self.S_matrix_target.indices[
                start_pos_target:end_pos_target]

            # Chech whether the content coordinate is associated to a non zero target value
            # If true, the content coordinate has a collaborative non-zero value
            # if false, the content coordinate has a collaborative zero value
            is_common = np.in1d(content_coordinates, target_coordinates)

            num_common_in_current_row = is_common.sum()
            num_common_coordinates += num_common_in_current_row

            for index in range(len(is_common)):

                if num_samples == estimated_n_samples:
                    dataBlock = 1000000
                    self.row_list = np.concatenate(
                        (self.row_list, np.zeros(dataBlock, dtype=np.int32)))
                    self.col_list = np.concatenate(
                        (self.col_list, np.zeros(dataBlock, dtype=np.int32)))
                    self.data_list = np.concatenate(
                        (self.data_list, np.zeros(dataBlock,
                                                  dtype=np.float64)))

                if is_common[index]:
                    # If cell exists in target matrix, add its value
                    # Otherwise it will remain zero with a certain probability

                    col_index = content_coordinates[index]

                    self.row_list[num_samples] = row_index
                    self.col_list[num_samples] = col_index

                    new_data_value = self.S_matrix_target[row_index, col_index]

                    if self.normalize_similarity:
                        new_data_value *= sum_of_squared_features[
                            row_index] * sum_of_squared_features[col_index]

                    self.data_list[num_samples] = new_data_value

                    num_samples += 1

                elif np.random.rand() <= self.add_zeros_quota:

                    col_index = content_coordinates[index]

                    self.row_list[num_samples] = row_index
                    self.col_list[num_samples] = col_index
                    self.data_list[num_samples] = 0.0

                    num_samples += 1

            if time.time(
            ) - start_time_batch > 30 or num_samples == S_matrix_contentKNN.nnz * (
                    1 + self.add_zeros_quota):

                print(self.RECOMMENDER_NAME +
                      ": Generating train data. Sample {} ( {:.2f} %) ".format(
                          num_samples, num_samples / S_matrix_contentKNN.nnz *
                          (1 + self.add_zeros_quota) * 100))

                sys.stdout.flush()
                sys.stderr.flush()

                start_time_batch = time.time()

        self._writeLog(
            self.RECOMMENDER_NAME +
            ": Content S structure has {} out of {} ( {:.2f}%) nonzero collaborative cells"
            .format(num_common_coordinates, S_matrix_contentKNN.nnz,
                    num_common_coordinates / S_matrix_contentKNN.nnz * 100))

        # Discard extra cells at the left of the array
        self.row_list = self.row_list[:num_samples]
        self.col_list = self.col_list[:num_samples]
        self.data_list = self.data_list[:num_samples]

        data_nnz = sum(np.array(self.data_list) != 0)
        data_sum = sum(self.data_list)

        collaborative_nnz = self.S_matrix_target.nnz
        collaborative_sum = sum(self.S_matrix_target.data)

        self._writeLog(
            self.RECOMMENDER_NAME +
            ": Nonzero collaborative cell sum is: {:.2E}, average is: {:.2E}, "
            "average over all collaborative data is {:.2E}".format(
                data_sum, data_sum / data_nnz, collaborative_sum /
                collaborative_nnz))