def main(_): project_name = 'DUAL' ft_params = DualParams(project_name) ft_params.post_process() mode = ft_params.params['mode'] model_fn = DUALModel(ft_params.params) input_fn = DUALBaseData(ft_params.params) if mode == 'train': print('train&eval') estimator_solver.train(input_fn=input_fn, model_fn=model_fn, params=ft_params.params) elif mode == 'eval': print('eval') estimator_solver.evaluate(input_fn=input_fn, model_fn=model_fn, params=ft_params.params) elif mode == 'infer': print('predict') estimator_solver.predict(input_fn=input_fn, model_fn=model_fn, params=ft_params.params) else: raise ValueError('invalid mode: {}'.format(mode)) model_dir = ft_params.params['model_dir'] utils.stat_eval_results(model_dir, 'eval_result.txt')
def main(_): project_name = 'ADEN_ft' seq_params = MixedSeqMultiModalFtParams(project_name) seq_params.post_process() mode = seq_params.params['mode'] model_fn = MixedSeqMultiModalFtModel(seq_params.params) input_fn = MixedSeqMultiModalData(seq_params.params) if mode == 'train': print('train&eval') estimator_solver.train(input_fn=input_fn, model_fn=model_fn, params=seq_params.params) elif mode == 'eval': print('eval') estimator_solver.evaluate(input_fn=input_fn, model_fn=model_fn, params=seq_params.params) elif mode == 'infer': print('predict') estimator_solver.predict(input_fn=input_fn, model_fn=model_fn, params=seq_params.params) else: raise ValueError('invalid mode: {}'.format(mode)) print('------------ evaluate ------------') tf.logging.info('------------ evaluate ------------') estimator_solver.evaluate(input_fn=input_fn, model_fn=model_fn, params=seq_params.params) model_dir = seq_params.params['model_dir'] utils.stat_eval_results(model_dir, 'eval_result.txt')
def build_eval_estimator_spec(self, mode): eval_est_spec = tf.estimator.EstimatorSpec( mode, loss=self.loss, eval_metric_ops={ 'metric/test/content_accuracy': self.accuracy, 'metric/test/content_roc_auc': self.roc_auc, }) utils.stat_eval_results(self.model_dir, 'eval_result_temp.txt') self.eval_est_spec = eval_est_spec
def build_eval_estimator_spec(self, mode): utils.stat_eval_results(self.model_dir, 'eval_result_temp.txt') return tf.estimator.EstimatorSpec( mode, loss=self.loss, )