distargs=(), loc=0, scale=1, line='45') plt.grid() fig.savefig('logs/out/{}/real.png'.format(saved_file)) plt.close() if it % 1000 == 0: sequences_generator = [] for _ in range(int(1000 / BATCH_SIZE)): sequences_gen = sess.run(fake_data, feed_dict={ Z: fake_batch[0], fake_seqlen: fake_batch[1]}) shape_gen = sequences_gen.shape sequences_gen = np.reshape( sequences_gen, (shape_gen[0], shape_gen[1])) if D_DIFF: sequences_gen = np.cumsum(sequences_gen, axis=1) sequences_gen = sequence_filter( sequences_gen, fake_batch[1]) # remove padding tokens sequences_generator += sequences_gen ts_gen, intensity_gen = get_intensity(sequences_generator, T, n_t) deviation = np.linalg.norm( intensity_gen - intensity_real) / np.linalg.norm(intensity_real) print( 'Iter: {}; D loss: {:.4}; G_loss: {:.4}; data:{}; deviation: {}'.format( it, D_loss_curr, G_loss_curr, DATA, deviation)) plt.plot(ts_real, intensity_real, label='real') plt.plot(ts_gen, intensity_gen, label='generated') plt.legend(loc=1) plt.xlabel('time') plt.ylabel('intensity') plt.savefig('logs/out/{}/{}_{}.png'
'Iter: {}; Data: {}; D loss: {:.4}; neglik:{}; reg:{} Para:{}; w:{}' .format(it, DATA, D_loss_curr, neglike, regular, para_max_, decay_w_)) if np.max(np.abs(last_value - column_para_)) < 1e-4 and np.abs( D_loss_curr - last_loss) < 1: #np.max(np.abs(last_value-column_para_))<1e-2 stop_indicator = True last_value = column_para_ last_loss = D_loss_curr if it % 1000 == 0 and it > 10000: sequences_generator = [] for _ in range(100): sequences_gen = sess.run(fake_data) sequences_generator.append(sequences_gen) sequences_generator = sequence_filter(sequences_generator, None, T) ts_gen, intensity_gen = get_intensity(sequences_generator, T, n_t) deviation = np.linalg.norm( intensity_gen - intensity_real) / np.linalg.norm(intensity_real) plt.plot(ts_real, intensity_real, label='real') plt.plot(ts_gen, intensity_gen, label='generated') plt.legend(loc=1) plt.xlabel('time') plt.ylabel('intensity') plt.savefig('out/{}/{}_{}.png'.format(saved_file, str(it).zfill(3), deviation), bbox_inches='tight') plt.close() if not REAL_DATA and DATA != "rmtpp":