예제 #1
0
def test(epoch, net,trainloader,  testloader,criterion, device):
    net.eval()

    test_loss = 0
    correct = 0
    total = 0

    scores, labels = [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = net(inputs)
            # loss = criterion(outputs, targets)
            # test_loss += loss.item()
            # _, predicted = outputs.max(1)
            scores.append(outputs)
            labels.append(targets)

            # total += targets.size(0)
            # correct += predicted.eq(targets).sum().item()

            progress_bar(batch_idx, len(testloader))

    # Get the prdict results.
    scores = torch.cat(scores,dim=0).cpu().numpy()
    labels = torch.cat(labels,dim=0).cpu().numpy()
    scores = np.array(scores)[:, np.newaxis, :]
    labels = np.array(labels)

    # Fit the weibull distribution from training data.
    print("Fittting Weibull distribution...")
    _, mavs, dists = compute_train_score_and_mavs_and_dists(args.train_class_num, trainloader, device, net)
    categories = list(range(0, args.train_class_num))
    weibull_model = fit_weibull(mavs, dists, categories, args.weibull_tail, "euclidean")

    pred_softmax, pred_softmax_threshold, pred_openmax = [], [], []
    for score in scores:
        so, ss = openmax(weibull_model, categories, score,
                         0.5, args.weibull_alpha, "euclidean")  # openmax_prob, softmax_prob
        pred_softmax.append(np.argmax(ss))
        pred_softmax_threshold.append(np.argmax(ss) if np.max(ss) >= args.weibull_threshold else args.train_class_num)
        pred_openmax.append(np.argmax(so) if np.max(so) >= args.weibull_threshold else args.train_class_num)

    print("Evaluation...")
    eval_softmax = Evaluation(pred_softmax, labels)
    eval_softmax_threshold = Evaluation(pred_softmax_threshold, labels)
    eval_openmax = Evaluation(pred_openmax, labels)



    print(f"Softmax accuracy is %.3f"%(eval_softmax.accuracy))
    print(f"Softmax-with-threshold accuracy is %.3f"%(eval_softmax_threshold.accuracy))
    print(f"Openmax accuracy is %.3f"%(eval_openmax.accuracy))
def stage_evaluate(net,testloader,t_min, t_max, feature='energy'):
    Feature_list = []
    Predict_list = []
    Target_list = []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            out = net(inputs)  # shape [batch,class]
            Feature_list.append(out[feature])
            Target_list.append(targets)
            _, predicted = (out["normweight_fea2cen"]).max(1)
            Predict_list.append(predicted)
            progress_bar(batch_idx, len(testloader), '| ')

    Feature_list = torch.cat(Feature_list, dim=0)
    if feature == "normweight_fea2cen":
        # return the max propobility.
        Feature_list = torch.softmax(Feature_list, dim=1).max(dim=1, keepdim=False)[0]
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)

    best_thres = 0.
    best_eval = None
    best_f1_measure = 0.
    for thres in np.linspace(t_min,t_max,20):
        Predict_list[Feature_list<thres] = args.train_class_num
        eval = Evaluation(Predict_list.cpu().numpy(),Target_list.cpu().numpy())
        if eval.f1_measure > best_f1_measure:
            best_f1_measure = eval.f1_measure
            best_thres = thres
            best_eval = eval
    print("===> Finial Evaluation...")
    print(f"threshold is: {best_thres}")
    print(f"F1: {best_eval.f1_measure}\nmacro-F1: {best_eval.f1_macro}")
예제 #3
0
def test(net, testloader, device):
    net.eval()

    scores, labels = [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            _, outputs = net(inputs)
            scores.append(outputs)
            labels.append(targets)
            progress_bar(batch_idx, len(testloader))

    # Get the prdict results.
    scores = torch.cat(scores, dim=0)
    scores = scores.softmax(dim=1)
    scores = scores.cpu().numpy()
    labels = torch.cat(labels, dim=0).cpu().numpy()

    pred = []
    for score in scores:
        pred.append(np.argmax(score) if np.max(score) >= args.threshold else args.train_class_num)

    print("Evaluation...")
    eval = Evaluation(pred, labels, scores)
    torch.save(eval, os.path.join(args.checkpoint, 'eval.pkl'))
    print(f"Center-Loss accuracy is %.3f" % (eval.accuracy))
    print(f"Center-Loss F1 is %.3f" % (eval.f1_measure))
    print(f"Center-Loss f1_macro is %.3f" % (eval.f1_macro))
    print(f"Center-Loss f1_macro_weighted is %.3f" % (eval.f1_macro_weighted))
    print(f"Center-Loss area_under_roc is %.3f" % (eval.area_under_roc))
def test(net, testloader, device):
    net.eval()

    scores, labels = [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            _, outputs = net(inputs)
            scores.append(outputs)
            labels.append(targets)
            progress_bar(batch_idx, len(testloader))

    # Get the prdict results.
    scores = torch.cat(scores,dim=0)
    scores = scores.softmax(dim=1)
    scores = scores.cpu().numpy()
    labels = torch.cat(labels,dim=0).cpu().numpy()

    pred = []
    for score in scores:
        pred.append(np.argmax(score) if np.max(score) >= args.threshold else args.train_class_num)

    print("Evaluation...")
    eval = Evaluation(pred, labels)
    print(f"Center-Loss accuracy is %.3f"%(eval.accuracy))
예제 #5
0
def test_with_hist(net, dataloader, device, intervals=20, name="stage1_test"):
    energy_list = []  # energy value
    Target_list = []
    Predict_list = []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(dataloader):
            inputs, targets = inputs.to(device), targets.to(device)
            out = net(inputs)  # shape [batch,class]
            energy_list.append(out["energy"])
            Target_list.append(targets)
            _, predicted = (out['normweight_fea2cen']).max(1)
            Predict_list.append(predicted)
            progress_bar(batch_idx, len(dataloader), "|||")
    energy_list = torch.cat(energy_list, dim=0)
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)
    unknown_label = Target_list.max()
    unknown_energy_list = energy_list[Target_list == unknown_label]
    known_energy_list = energy_list[Target_list != unknown_label]
    plot_listhist([known_energy_list, unknown_energy_list],
                  args,
                  labels=["known", "unknown"],
                  name=name + "_energy")

    best_F1 = 0
    best_thres = 0
    best_eval = None
    # for these unbounded metric, we explore more intervals by *5 to achieve a relatively fair comparison.
    expand_factor = 5
    openmetric_list = energy_list
    threshold_min = openmetric_list.min().item()
    threshold_max = openmetric_list.max().item()
    for thres in np.linspace(threshold_min, threshold_max,
                             expand_factor * intervals):
        Predict_list[openmetric_list < thres] = args.train_class_num
        eval = Evaluation(Predict_list.cpu().numpy(),
                          Target_list.cpu().numpy())
        if eval.f1_measure > best_F1:
            best_F1 = eval.f1_measure
            best_thres = thres
            best_eval = eval
    print(f"The energy range is [{threshold_min}, {threshold_max}] ")
    print(f"Best F1 is: {best_F1}  [in best threshold: {best_thres} ]")
    return {
        "best_F1": best_F1,
        "best_thres": best_thres,
        "best_eval": best_eval
    }
예제 #6
0
def stage2_test(net, testloader, device):
    correct = 0
    total = 0

    pred_list, target_list, score_list = [], [], []
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            out = net(inputs)
            threshold = out["thresholds"]  # [class]
            sim_fea2cen= out["sim_fea2cen"]  # [batch,class]
            dis_fea2cen= out["dis_fea2cen"]  # [batch,class]

            b,c = dis_fea2cen.shape
            dis_predicted, predicted = (dis_fea2cen).min(1) #[b]


            compare_threshold = 1*threshold[predicted]
            predicted[(dis_predicted-compare_threshold)>0] = c

            pred_list.extend(predicted.tolist())
            target_list.extend(targets.tolist())
            score_list.extend(sim_fea2cen.tolist())

            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()



            progress_bar(batch_idx, len(testloader), '| Acc: %.3f%% (%d/%d)'
                         % (100. * correct / total, correct, total))
    eval_result = Evaluation(pred_list, target_list, score_list)

    torch.save(eval_result, os.path.join(args.checkpoint, 'eval.pkl'))

    print(f"accuracy is %.3f" % (eval_result.accuracy))
    print(f"F1 is %.3f" % (eval_result.f1_measure))
    print(f"f1_macro is %.3f" % (eval_result.f1_macro))
    print(f"f1_macro_weighted is %.3f" % (eval_result.f1_macro_weighted))
    print(f"area_under_roc is %.3f" % (eval_result.area_under_roc))
예제 #7
0
def detail_evalate(sim_list, dis_list, target_list, threshold):
    predicts = []
    labels = []
    c = sim_list.shape[1]
    # print(c)
    for i in range(target_list.shape[0]):
        sim, dis, target = sim_list[i], dis_list[i], target_list[i]
        sim_value, sim_ind = sim.max(0)
        dis_value, dis_ind = dis.min(0)
        if sim_value < args.sim_threshold or dis_value > args.amplier * threshold[
                dis_ind]:
            # if sim_value < args.sim_threshold:
            predict = c
        else:
            predict = sim_ind.item()
        predicts.append(predict)
        labels.append(target.item())
        # print(f"sim_value{sim_value}\t predict{predict}\t  target{target}\t dis_value{dis_value}\t")
    eval_result = Evaluation(predicts, labels, sim_list.tolist())
    print(f"accuracy is %.3f" % (eval_result.accuracy))
    print(f"F1 is %.3f" % (eval_result.f1_measure))
    print(f"f1_macro is %.3f" % (eval_result.f1_macro))
    print(f"f1_macro_weighted is %.3f" % (eval_result.f1_macro_weighted))
    print(f"area_under_roc is %.3f" % (eval_result.area_under_roc))
예제 #8
0
def test(net, testloader, criterion, device, intervals=20):
    normfea_list = []  # extracted feature norm
    cosine_list = []  # extracted cosine similarity
    energy_list = []  # energy value
    embed_fea_list = []
    dotproduct_fea2cen_list = []
    normweight_fea2cen_list = []
    Target_list = []
    Predict_list = []

    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            out = net(inputs)  # shape [batch,class]

            # Test cannot calculate loss beacuse of class number dismatch.
            # loss_dict = criterion(out, targets)
            # loss = loss_dict['loss']
            # test_loss += loss.item()

            normfea_list.append(out["norm_fea"])
            cosine_list.append(out["cosine_fea2cen"])
            energy_list.append(out["energy"])
            embed_fea_list.append(out["embed_fea"])
            dotproduct_fea2cen_list.append(out["dotproduct_fea2cen"])
            normweight_fea2cen_list.append(out["normweight_fea2cen"])
            Target_list.append(targets)

            # "CenterLoss", "SoftmaxLoss", "ArcFaceLoss", "NormFaceLoss", "PSoftmaxLoss"
            if args.loss in [
                    "CenterLoss",
                    "SoftmaxLoss",
            ]:
                _, predicted = (out['dotproduct_fea2cen']).max(1)
            elif args.loss in [
                    "ArcFaceLoss",
                    "NormFaceLoss",
            ]:
                _, predicted = (out['cosine_fea2cen']).max(1)
            else:  # PSoftmaxLoss
                _, predicted = (out['normweight_fea2cen']).max(1)
            Predict_list.append(predicted)

            progress_bar(batch_idx, len(testloader), "|||")

    normfea_list = torch.cat(normfea_list, dim=0)
    cosine_list = torch.cat(cosine_list, dim=0)
    energy_list = torch.cat(energy_list, dim=0)
    embed_fea_list = torch.cat(embed_fea_list, dim=0)
    dotproduct_fea2cen_list = torch.cat(dotproduct_fea2cen_list, dim=0)
    normweight_fea2cen_list = torch.cat(normweight_fea2cen_list, dim=0)
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)

    # "CenterLoss", "SoftmaxLoss", "ArcFaceLoss", "NormFaceLoss", "PSoftmaxLoss"
    # "possibility", "distance",'norm','energy','cosine'
    best_F1_possibility = 0
    best_F1_norm = 0
    best_F1_energy = 0

    # for these unbounded metric, we explore more intervals by *5 to achieve a relatively fair comparison.
    expand_factor = 5
    Predict_list_possibility = Predict_list.clone().detach()
    Predict_list_norm = Predict_list.clone().detach()
    Predict_list_energy = Predict_list.clone().detach()

    # possibility
    if args.loss in ["SoftmaxLoss"]:
        openmetric_possibility = dotproduct_fea2cen_list
    if args.loss in ["PSoftmaxLoss"]:
        openmetric_possibility = normweight_fea2cen_list
    openmetric_possibility, _ = torch.softmax(openmetric_possibility,
                                              dim=1).max(dim=1)
    for thres in np.linspace(0.0, 1.0, intervals):
        Predict_list_possibility[
            openmetric_possibility < thres] = args.train_class_num
        eval = Evaluation(Predict_list_possibility.cpu().numpy(),
                          Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_possibility:
            best_F1_possibility = eval.f1_measure

    # norm
    openmetric_norm = normfea_list.squeeze(dim=1)
    threshold_min_norm = openmetric_norm.min().item()
    threshold_max_norm = openmetric_norm.max().item()
    for thres in np.linspace(threshold_min_norm, threshold_max_norm,
                             expand_factor * intervals):
        Predict_list_norm[openmetric_norm < thres] = args.train_class_num
        eval = Evaluation(Predict_list_norm.cpu().numpy(),
                          Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_norm:
            best_F1_norm = eval.f1_measure

    # energy
    openmetric_energy = energy_list
    threshold_min_energy = openmetric_energy.min().item()
    threshold_max_energy = openmetric_energy.max().item()
    for thres in np.linspace(threshold_min_energy, threshold_max_energy,
                             expand_factor * intervals):
        Predict_list_energy[openmetric_energy < thres] = args.train_class_num
        eval = Evaluation(Predict_list_energy.cpu().numpy(),
                          Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_energy:
            best_F1_energy = eval.f1_measure

    print(
        f"Best Possibility F1 is: {best_F1_possibility} | Norm F1 is :{best_F1_norm} | Energy F1 is: {best_F1_energy}"
    )
    return {
        "best_F1_possibility": best_F1_possibility,
        "best_F1_norm": best_F1_norm,
        "best_F1_energy": best_F1_energy
    }
예제 #9
0
def validate(val_loader, model,intervals=20):
    # switch to evaluate mode
    model.eval()
    if args.local_rank == 0:
        print("start evaluating...")

    normfea_list = []  # extracted feature norm
    energy_list = []  # energy value
    normweight_fea2cen_list = []
    Target_list = []
    Predict_list = []


    for i, data in enumerate(val_loader):
        input = data[0]["data"]
        target = data[0]["label"].squeeze().cuda().long()
        val_loader_len = int(val_loader._size / args.batch_size)

        if args.local_rank == 0 and i%200 ==0:
            print(f"evaluating {i}\t/{val_loader_len}...")

        target = target.cuda(non_blocking=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            out = model(input_var)

            normfea_list.append(out["norm_fea"])
            energy_list.append(out["energy"])
            normweight_fea2cen_list.append(out["normweight_fea2cen"])
            Target_list.append(target_var)
            _, predicted = (out['normweight_fea2cen']).max(1)
            Predict_list.append(predicted)

    normfea_list = torch.cat(normfea_list, dim=0)
    energy_list = torch.cat(energy_list, dim=0)
    normweight_fea2cen_list = torch.cat(normweight_fea2cen_list, dim=0)
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)

    best_F1_possibility = 0
    best_possibility_thr = 0
    best_F1_norm = 0
    best_norm_thr = 0
    best_F1_energy = 0
    best_energy_thr = 0

    # for these unbounded metric, we explore more intervals by *5 to achieve a relatively fair comparison.
    expand_factor = 5
    Predict_list_possibility = Predict_list.clone().detach()
    Predict_list_norm = Predict_list.clone().detach()
    Predict_list_energy = Predict_list.clone().detach()

    # possibility
    openmetric_possibility = normweight_fea2cen_list
    openmetric_possibility, _ = torch.softmax(openmetric_possibility, dim=1).max(dim=1)
    default_thr_possibility = 0.5
    Predict_list_possibility[openmetric_possibility < default_thr_possibility] = args.train_class_num
    eval_possibility = Evaluation(Predict_list_possibility.cpu().numpy(), Target_list.cpu().numpy())


    # norm
    openmetric_norm = normfea_list.squeeze(dim=1)
    threshold_min_norm = openmetric_norm.min().item()
    threshold_max_norm = openmetric_norm.max().item()
    default_thr_norm = threshold_min_norm*1.6
    Predict_list_norm[openmetric_norm < default_thr_norm] = args.train_class_num
    eval_norm = Evaluation(Predict_list_norm.cpu().numpy(), Target_list.cpu().numpy())

    # energy
    openmetric_energy = energy_list
    threshold_min_energy = openmetric_energy.min().item()
    threshold_max_energy = openmetric_energy.max().item()
    default_thr_energy = threshold_min_energy*1.6
    Predict_list_energy[openmetric_energy < default_thr_energy] = args.train_class_num
    eval_energy = Evaluation(Predict_list_energy.cpu().numpy(), Target_list.cpu().numpy())

    if args.local_rank == 0:
       print(f"possibility: f1:{eval_possibility.f1_measure} | macro-F1: {eval_possibility.f1_macro_weighted}")
       print(f"Norm: f1:{eval_norm.f1_measure} | macro-F1: {eval_norm.f1_macro_weighted}")
       print(f"Energy: f1:{eval_energy.f1_measure} | macro-F1: {eval_energy.f1_macro_weighted}")

    return {
        "best_F1_possibility": best_F1_possibility,
        "best_F1_norm": best_F1_norm,
        "best_F1_energy": best_F1_energy
    }
예제 #10
0
def validate(val_loader, train_loader, model):
    # switch to evaluate mode
    model.eval()
    if args.local_rank == 0:
        print("start evaluating...")
    scores, labels = [], []
    for i, data in enumerate(val_loader):
        input = data[0]["data"]
        target = data[0]["label"].squeeze().cuda().long()
        val_loader_len = int(val_loader._size / args.batch_size)

        if args.local_rank == 0 and i % 200 == 0:
            print(f"evaluating {i}\t/{val_loader_len}...")

        target = target.cuda(non_blocking=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            _, output = model(input_var)

        # print(f"output shape is : {output.shape}, max target is {max(target_var)}, min target is {min(target_var)}")
        scores.append(output)
        labels.append(target)

    # Get the prdict results.
    scores = torch.cat(scores, dim=0).cpu().numpy()
    labels = torch.cat(labels, dim=0).cpu().numpy()
    scores = np.array(scores)[:, np.newaxis, :]
    labels = np.array(labels)

    # Fit the weibull distribution from training data.
    print("Fittting Weibull distribution...")
    _, mavs, dists = compute_train_score_and_mavs_and_dists(
        args.train_class_num, train_loader, model)
    print("Finish fittting Weibull distribution...")
    categories = list(range(0, args.train_class_num))
    weibull_model = fit_weibull(mavs, dists, categories, args.weibull_tail,
                                "euclidean")

    pred_softmax, pred_softmax_threshold, pred_openmax = [], [], []
    score_softmax, score_openmax = [], []
    for score in scores:
        so, ss = openmax(weibull_model, categories, score, 0.5,
                         args.weibull_alpha, "euclidean")
        # print(f"so  {so} \n ss  {ss}")# openmax_prob, softmax_prob
        pred_softmax.append(np.argmax(ss))
        pred_softmax_threshold.append(
            np.argmax(ss) if np.max(ss) >= args.weibull_threshold else args.
            train_class_num)
        pred_openmax.append(
            np.argmax(so) if np.max(so) >= args.weibull_threshold else args.
            train_class_num)
        score_softmax.append(ss)
        score_openmax.append(so)

    print("Evaluation...")
    eval_softmax = Evaluation(pred_softmax, labels)
    eval_softmax_threshold = Evaluation(pred_softmax_threshold, labels)
    eval_openmax = Evaluation(pred_openmax, labels)
    # torch.save(eval_softmax, os.path.join(args.checkpoint, 'eval_softmax.pkl'))
    # torch.save(eval_softmax_threshold, os.path.join(args.checkpoint, 'eval_softmax_threshold.pkl'))
    # torch.save(eval_openmax, os.path.join(args.checkpoint, 'eval_openmax.pkl'))

    softmax_results = torch.Tensor([
        eval_softmax.accuracy, eval_softmax.f1_measure, eval_softmax.f1_macro,
        eval_softmax.f1_macro_weighted
    ])
    threshold_results = torch.Tensor([
        eval_softmax_threshold.accuracy, eval_softmax_threshold.f1_measure,
        eval_softmax_threshold.f1_macro,
        eval_softmax_threshold.f1_macro_weighted
    ])
    openmax_results = torch.Tensor([
        eval_openmax.accuracy, eval_openmax.f1_measure, eval_openmax.f1_macro,
        eval_openmax.f1_macro_weighted
    ])

    softmax_results = reduce_tensor(softmax_results.to(input_var.device))
    threshold_results = reduce_tensor(threshold_results.to(input_var.device))
    openmax_results = reduce_tensor(openmax_results.to(input_var.device))
    if args.local_rank == 0:
        print(f"the result for three     :  Acc, F1, macro, w-marco")
        print(f"the result for softmax   :  {softmax_results}")
        print(f"the result for threshold :  {threshold_results}")
        print(f"the result for openmax   :  {openmax_results}")
def test(net, testloader, criterion, device, intervals=20):
    normfea_list = []  # extracted feature norm
    cosine_list = []  # extracted cosine similarity
    energy_list = []  # energy value
    embed_fea_list = []
    dotproduct_fea2cen_list = []
    normweight_fea2cen_list = []
    Target_list = []
    Predict_list = []

    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            out = net(inputs)  # shape [batch,class]

            # Test cannot calculate loss beacuse of class number dismatch.
            # loss_dict = criterion(out, targets)
            # loss = loss_dict['loss']
            # test_loss += loss.item()

            normfea_list.append(out["norm_fea"])
            cosine_list.append(out["cosine_fea2cen"])
            energy_list.append(out["energy"])
            embed_fea_list.append(out["embed_fea"])
            dotproduct_fea2cen_list.append(out["dotproduct_fea2cen"])
            normweight_fea2cen_list.append(out["normweight_fea2cen"])
            Target_list.append(targets)

            # "CenterLoss", "SoftmaxLoss", "ArcFaceLoss", "NormFaceLoss", "PSoftmaxLoss"
            if args.loss in [
                    "CenterLoss",
                    "SoftmaxLoss",
            ]:
                _, predicted = (out['dotproduct_fea2cen']).max(1)
            elif args.loss in [
                    "ArcFaceLoss",
                    "NormFaceLoss",
            ]:
                _, predicted = (out['cosine_fea2cen']).max(1)
            else:  # PSoftmaxLoss
                _, predicted = (out['normweight_fea2cen']).max(1)
            Predict_list.append(predicted)

            progress_bar(batch_idx, len(testloader), "|||")

    normfea_list = torch.cat(normfea_list, dim=0)
    cosine_list = torch.cat(cosine_list, dim=0)
    energy_list = torch.cat(energy_list, dim=0)
    embed_fea_list = torch.cat(embed_fea_list, dim=0)
    dotproduct_fea2cen_list = torch.cat(dotproduct_fea2cen_list, dim=0)
    normweight_fea2cen_list = torch.cat(normweight_fea2cen_list, dim=0)
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)

    # "CenterLoss", "SoftmaxLoss", "ArcFaceLoss", "NormFaceLoss", "PSoftmaxLoss"
    # "possibility", "distance",'norm','energy','cosine'
    best_F1 = 0
    best_thres = 0
    best_eval = None

    # for these unbounded metric, we explore more intervals by *5 to achieve a relatively fair comparison.

    expand_factor = 5

    if args.openmetric == "possibility" and args.loss in [
            "CenterLoss", "SoftmaxLoss"
    ]:
        threshold_min = 0.0
        threshold_max = 1.0
        openmetric_list, _ = torch.softmax(dotproduct_fea2cen_list,
                                           dim=1).max(dim=1)
        for thres in np.linspace(threshold_min, threshold_max, intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "possibility" and args.loss in [
            "ArcFaceLoss", "NormFaceLoss"
    ]:
        threshold_min = 0.0
        threshold_max = 1.0
        fake_Target_list = Target_list
        fake_Target_list[fake_Target_list ==
                         args.train_class_num] = args.train_class_num - 1
        openmetric_list = criterion({"cosine_fea2cen": cosine_list},
                                    fake_Target_list)["output"]
        openmetric_list, _ = torch.softmax(openmetric_list, dim=1).max(dim=1)
        print(f"openmetric_list shape is  {openmetric_list.shape}")
        print(
            f"Threshold range is {openmetric_list.min()} | {openmetric_list.max()}"
        )
        for thres in np.linspace(threshold_min, threshold_max, intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "possibility" and args.loss in ["PSoftmaxLoss"]:
        threshold_min = 0.0
        threshold_max = 1.0
        openmetric_list, _ = torch.softmax(normweight_fea2cen_list,
                                           dim=1).max(dim=1)
        for thres in np.linspace(threshold_min, threshold_max, intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "distance" and args.loss in ["CenterLoss"]:
        distance = Distance()
        openmetric_list = distance.l2(embed_fea_list, out["centroids"])
        openmetric_list, _ = openmetric_list.min(dim=1)
        threshold_min = openmetric_list.min().item()
        threshold_max = openmetric_list.max().item()
        print(f"Threshold range is {threshold_min} - {threshold_max}")
        for thres in np.linspace(threshold_min, threshold_max,
                                 expand_factor * intervals):
            Predict_list[openmetric_list > thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "cosine" and args.loss in [
            "ArcFaceLoss", "NormFaceLoss"
    ]:
        openmetric_list, _ = cosine_list.max(dim=1)
        threshold_min = openmetric_list.min().item()
        threshold_max = openmetric_list.max().item()
        print(
            f"openmetric_list range cosine is {openmetric_list.min()} | {openmetric_list.max()} "
        )
        for thres in np.linspace(threshold_min, threshold_max, intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "norm" and args.loss in ["PSoftmaxLoss"]:

        openmetric_list = normfea_list.squeeze(dim=1)
        threshold_min = openmetric_list.min().item()
        threshold_max = openmetric_list.max().item()
        for thres in np.linspace(threshold_min, threshold_max,
                                 expand_factor * intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    if args.openmetric == "energy" and args.loss in ["PSoftmaxLoss"]:

        openmetric_list = energy_list
        threshold_min = openmetric_list.min().item()
        threshold_max = openmetric_list.max().item()
        for thres in np.linspace(threshold_min, threshold_max,
                                 expand_factor * intervals):
            Predict_list[openmetric_list < thres] = args.train_class_num
            eval = Evaluation(Predict_list.cpu().numpy(),
                              Target_list.cpu().numpy())
            if eval.f1_measure > best_F1:
                best_F1 = eval.f1_measure
                best_thres = thres
                best_eval = eval

    print(f"Best F1 is: {best_F1}  [in best threshold: {best_thres} ]")
    return {
        "best_F1": best_F1,
        "best_thres": best_thres,
        "best_eval": best_eval
    }
예제 #12
0
            #outputTensor = loaded_1.forward(fourChannelHeatmap[0].unsqueeze(0).unsqueeze(0).to(device))  #

            output = outputTensor[0].cpu().clone().detach().numpy()

            compl = np.zeros([3, imageSize, int(imageSize * 5)])
            compl[:, :,
                  0:imageSize] = (image.transpose(2, 0, 1) - 127.5) / 127.5
            compl[:, :,
                  imageSize:imageSize * 2] = fourChannelHeatmap[0:3, :, :]
            compl[:, :, imageSize * 2:imageSize * 3] = output[0:3, :, :]
            compl[0, :, imageSize * 3:imageSize * 4] = output[3, :, :]
            compl[1, :, imageSize * 3:imageSize * 4] = output[3, :, :]
            compl[2, :, imageSize * 3:imageSize * 4] = output[3, :, :]

            if ssim_counter % ssim_modulo == 0:
                _, diff = ev.ssim(image, output[0:3, :, :].transpose(1, 2, 0))
            ssim_counter += 1
            compl[0, :, imageSize * 4:imageSize * 5] = diff / 255 * 2 - 1
            compl[1, :, imageSize * 4:imageSize * 5] = diff / 255 * 2 - 1
            compl[2, :, imageSize * 4:imageSize * 5] = diff / 255 * 2 - 1

            output = compl.transpose(1, 2, 0)
            output = output * 127.5 + 127.5
            output = output.astype('uint8')

            #live3DPlot(outputTensor[0])

            if cv2.waitKey(1) & 0xFF == ord('s'):
                hm = fourChannelHeatmap[0:3].cpu().clone().detach().numpy()
                hm = hm * 127.5 + 127.5
                hm = hm.astype('uint8')
예제 #13
0
def test(net, criterion, testloader, outloader, epoch=None, **options):
    net.eval()
    correct, total = 0, 0

    torch.cuda.empty_cache()

    _pred_k, _pred_u, _labels = [], [], []

    with torch.no_grad():
        for data, labels in testloader:
            if options['use_gpu']:
                data, labels = data.cuda(), labels.cuda()

            with torch.set_grad_enabled(False):
                x, y = net(data, True)
                # print(f"labels is: {labels}")
                logits, _ = criterion(x, y)
                predictions = logits.data.max(1)[1]
                total += labels.size(0)
                correct += (predictions == labels.data).sum()

                _pred_k.append(logits.data.cpu().numpy())
                _labels.append(labels.data.cpu().numpy())

        for batch_idx, (data, labels) in enumerate(outloader):
            if options['use_gpu']:
                data, labels = data.cuda(), labels.cuda()

            with torch.set_grad_enabled(False):
                x, y = net(data, True)
                # x, y = net(data, return_feature=True)
                logits, _ = criterion(x, y)
                _pred_u.append(logits.data.cpu().numpy())

    # Accuracy
    acc = float(correct) * 100. / float(total)
    # print('Acc: {:.5f}'.format(acc))

    _pred_k = np.concatenate(_pred_k, 0)
    _pred_u = np.concatenate(_pred_u, 0)
    _labels = np.concatenate(_labels, 0)

    # Out-of-Distribution detction evaluation
    x1, x2 = np.max(_pred_k, axis=1), np.max(_pred_u, axis=1)
    # print(f"x1: {x1}")
    # print(f"x2: {x2}")
    # print(f"len x1: {len(x1)}")
    # print(f"len x2: {len(x2)}")
    # print(f"predict_k: {_pred_k}")
    # print(f"max predict_k: {np.max(_pred_k)}")
    # print(f"min predict_k: {np.min(_pred_k)}")
    # print(f"max _pred_u: {np.max(_pred_u)}")
    # print(f"min _pred_u: {np.min(_pred_u)}")

    tensor_predict_k = torch.Tensor(_pred_k)
    tensor_predict_u = torch.Tensor(_pred_u)
    tensor_lables = torch.Tensor(_labels)
    tensor_lables_unknown = tensor_predict_u.shape[-1] * torch.ones(
        tensor_predict_u.shape[0])

    tensor_predicts = torch.cat([tensor_predict_k, tensor_predict_u], dim=0)
    trensor_labels = torch.cat([tensor_lables, tensor_lables_unknown], dim=0)

    openmetric_list, Predict_list = tensor_predicts.max(dim=1)
    thres = options['thres']
    Predict_list[openmetric_list < thres] = tensor_predict_u.shape[-1]
    # print(f"tensor_predicts: {tensor_predicts}")
    # print(f"tensor_predicts shape: {tensor_predicts.shape}")
    # print(f"trensor_labels shape: {trensor_labels.shape}")
    prediction_scores = openmetric_list.numpy().reshape(-1, 1)
    eval = Evaluation(Predict_list.numpy(),
                      trensor_labels.numpy(),
                      prediction_scores=prediction_scores)
    # print(f"my f1_measure is{eval.f1_measure}")

    results = evaluation.metric_ood(x1, x2)['Bas']

    # OSCR
    _oscr_socre = evaluation.compute_oscr(_pred_k, _pred_u, _labels)

    results['ACC'] = acc
    results['OSCR'] = _oscr_socre * 100.
    results["eval"] = eval

    return results
예제 #14
0
def validate(val_loader, model,intervals=20):
    # switch to evaluate mode
    model.eval()
    if args.local_rank == 0:
        print("start evaluating...")

    normfea_list = []  # extracted feature norm
    energy_list = []  # energy value
    normweight_fea2cen_list = []
    Target_list = []
    Predict_list = []


    for i, data in enumerate(val_loader):
        input = data[0]["data"]
        target = data[0]["label"].squeeze().cuda().long()
        val_loader_len = int(val_loader._size / args.batch_size)

        if args.local_rank == 0 and i%200 ==0:
            print(f"evaluating {i}\t/{val_loader_len}...")

        target = target.cuda(non_blocking=True)
        input_var = Variable(input)
        target_var = Variable(target)

        # compute output
        with torch.no_grad():
            out = model(input_var)

            normfea_list.append(out["norm_fea"])
            energy_list.append(out["energy"])
            normweight_fea2cen_list.append(out["normweight_fea2cen"])
            Target_list.append(target_var)
            _, predicted = (out['normweight_fea2cen']).max(1)
            Predict_list.append(predicted)

    normfea_list = torch.cat(normfea_list, dim=0)
    energy_list = torch.cat(energy_list, dim=0)
    normweight_fea2cen_list = torch.cat(normweight_fea2cen_list, dim=0)
    Target_list = torch.cat(Target_list, dim=0)
    Predict_list = torch.cat(Predict_list, dim=0)

    best_F1_possibility = 0
    best_possibility_thr = 0
    best_F1_norm = 0
    best_norm_thr = 0
    best_F1_energy = 0
    best_energy_thr = 0

    # for these unbounded metric, we explore more intervals by *5 to achieve a relatively fair comparison.
    expand_factor = 5
    Predict_list_possibility = Predict_list.clone().detach()
    Predict_list_norm = Predict_list.clone().detach()
    Predict_list_energy = Predict_list.clone().detach()

    # possibility
    openmetric_possibility = normweight_fea2cen_list
    openmetric_possibility, _ = torch.softmax(openmetric_possibility, dim=1).max(dim=1)
    for thres in np.linspace(0.0, 1.0, intervals):
        Predict_list_possibility[openmetric_possibility < thres] = args.train_class_num
        eval = Evaluation(Predict_list_possibility.cpu().numpy(), Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_possibility:
            best_F1_possibility = eval.f1_measure
            best_possibility_thr = thres

    # norm
    openmetric_norm = normfea_list.squeeze(dim=1)
    threshold_min_norm = openmetric_norm.min().item()
    threshold_max_norm = openmetric_norm.max().item()
    for thres in np.linspace(threshold_min_norm, threshold_max_norm, expand_factor * intervals):
        Predict_list_norm[openmetric_norm < thres] = args.train_class_num
        eval = Evaluation(Predict_list_norm.cpu().numpy(), Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_norm:
            best_F1_norm = eval.f1_measure
            best_norm_thr = thres

    # energy
    openmetric_energy = energy_list
    threshold_min_energy = openmetric_energy.min().item()
    threshold_max_energy = openmetric_energy.max().item()
    for thres in np.linspace(threshold_min_energy, threshold_max_energy, expand_factor * intervals):
        Predict_list_energy[openmetric_energy < thres] = args.train_class_num
        eval = Evaluation(Predict_list_energy.cpu().numpy(), Target_list.cpu().numpy())
        if eval.f1_measure > best_F1_energy:
            best_F1_energy = eval.f1_measure
            best_energy_thr = thres

    if args.local_rank == 0:
        print(f"Energy range is {threshold_min_energy} to {threshold_max_energy}")
        print(f"Norm   range is {threshold_min_norm} to {threshold_max_norm}")
        print(f"Best Possibility F1 is: {best_F1_possibility} | Norm F1 is :{best_F1_norm} | Energy F1 is: {best_F1_energy}")
        print(
            f"Best Possibility thre is: {best_possibility_thr} | Norm thr is :{best_norm_thr} | Energy thr is: {best_energy_thr}")
        print(f"Max predict is {Predict_list.max()}")
        print(f"Max target  is {Target_list.max()}")
    if args.local_rank == 1:
        print(f"Max predict is {Predict_list.max()}")
        print(f"Max target  is {Target_list.max()}")

    return {
        "best_F1_possibility": best_F1_possibility,
        "best_F1_norm": best_F1_norm,
        "best_F1_energy": best_F1_energy
    }