def test_vgg_classify(): vgg16 = Vgg(True, vgg=Vgg.VGG16) vgg19 = Vgg(True, vgg=Vgg.VGG19) x = np.expand_dims(image_boy, 0) y1 = vgg16(x) y2 = vgg19(x) with tf.Session() as sess: y1, y2 = sess.run([y1, y2]) assert y2[0].tolist().index(y2.max()) == y1[0].tolist().index(y1.max())
def test_multiple_call(): vgg1 = Vgg(False, vgg=Vgg.VGG16) vgg2 = Vgg(False, vgg=Vgg.VGG16) x = np.expand_dims(image_boy, 0) y1 = vgg1(x) y2 = vgg2(x) y3 = vgg2(x.copy()) with tf.Session() as sess: sess.run([y1, y2, y3])
def test_vgg19(): vgg = Vgg(False, vgg=Vgg.VGG19) x = np.random.normal(size=[16, 128, 128, 3]) y = vgg(x, 'block2_conv2') assert y.shape == (16, 64, 64, 128) with tf.Session() as sess: sess.run(y)
def test_vgg16(): vgg = Vgg(False, vgg=Vgg.VGG16) x = np.random.normal(size=[16, 128, 128, 3]) y = vgg(x) assert y.shape == (16, ) with tf.Session() as sess: sess.run(y)
def __init__(self, glayers=16, dlayers=4, vgg_layer='block5_conv4', init_epoch=100, gan_weight=1e-3, vgg_weight=0.1569, name='srfeat', **kwargs): super(SRFEAT, self).__init__(**kwargs) self.name = name self.g_layers = glayers self.init_epoch = init_epoch self.gan_weight = gan_weight self.vgg_weight = vgg_weight self.vgg_layer = vgg_layer self.vgg = Vgg(False, Vgg.VGG19) self.F = 64 self.D = Discriminator.dcgan_d(self, [None, None, self.channel], 64, times_stride=dlayers, norm='bn', name_or_scope='Critic') self.DF = Discriminator.dcgan_d(self, [None, None, self.channel], 64, times_stride=dlayers, norm='bn', name_or_scope='DF')
def __init__(self, glayers=16, dlayers=4, vgg_layer='block2_conv2', init_epoch=100, mse_weight=1, gan_weight=1e-3, use_vgg=False, vgg_weight=2e-6, name='srgan', **kwargs): super(SRGAN, self).__init__(**kwargs) self.name = name self.g_layers = glayers self.init_epoch = init_epoch self.mse_weight = mse_weight self.gan_weight = gan_weight self.vgg_weight = vgg_weight self.vgg_layer = vgg_layer self.use_vgg = use_vgg self.vgg = None if self.use_vgg: self.vgg = Vgg(False, 'vgg19') self.D = Discriminator.dcgan_d(self, [None, None, self.channel], 64, times_stride=dlayers, norm='bn', name_or_scope='Critic')
import tensorflow as tf import numpy as np try: DATASETS = load_datasets('./Data/datasets.json') except FileNotFoundError: DATASETS = load_datasets('../Data/datasets.json') data = DATASETS['91-IMAGE'] loader = BatchLoader(1, data, 'test', convert_to_gray=True, crop=False, scale=1) m = Vgg(input_shape=[None, None, 3], type='vgg19') with tf.Session() as sess: # m = Vgg(input_shape=[None, None, 3], type='vgg19') for hr, lr in loader: y = m(hr, [2, 3], [2, 3]) break tf.reset_default_graph() m = Vgg(input_shape=[None, None, 3], type='vgg19') with tf.Session() as sess: # m = Vgg(input_shape=[None, None, 3], type='vgg19') for hr, lr in loader: y = m(hr, [2, 3], [2, 3]) break # Error for not reusing VGG variables