def get_ts_from_complete_data(complete_data, mask, keys, dates=None):

    if keys == None:
        keys = list(complete_data.keys())

    common_dates = becgis.common_dates([complete_data[key][1] for key in keys])
    becgis.assert_proj_res_ndv([complete_data[key][0] for key in keys])

    MASK = becgis.open_as_array(mask, nan_values=True)

    tss = dict()

    for key in keys:

        var_mm = np.array([])

        for date in common_dates:

            tif = complete_data[key][0][complete_data[key][1] == date][0]

            DATA = becgis.open_as_array(tif, nan_values=True)
            DATA[np.isnan(DATA)] = 0.0

            DATA[np.isnan(MASK)] = np.nan

            var_mm = np.append(var_mm, np.nanmean(DATA))

        tss[key] = (common_dates, var_mm)

    return tss
def get_ts_from_complete_data_spec(complete_data, lu_fh, keys, a, dates=None):

    if keys == None:
        keys = list(complete_data.keys())

    common_dates = becgis.common_dates([complete_data[key][1] for key in keys])
    becgis.assert_proj_res_ndv([complete_data[key][0] for key in keys])

    MASK = becgis.open_as_array(lu_fh, nan_values=True)

    lucs = lucs = gd.get_sheet4_6_classes()
    gw_classes = list()
    for subclass in [
            'Forests', 'Rainfed Crops', 'Shrubland', 'Forest Plantations'
    ]:
        gw_classes += lucs[subclass]
    mask_gw = np.logical_or.reduce([MASK == value for value in gw_classes])

    tss = dict()

    for key in keys:

        var_mm = np.array([])

        for date in common_dates:

            tif = complete_data[key][0][complete_data[key][1] == date][0]

            DATA = becgis.open_as_array(tif, nan_values=True)
            DATA[np.isnan(DATA)] = 0.0

            DATA[np.isnan(MASK)] = np.nan

            alpha = np.ones(np.shape(DATA)) * a

            alpha[mask_gw] = 0.0

            var_mm = np.append(var_mm, np.nanmean(DATA * alpha))

        tss[key] = (common_dates, var_mm)

    return tss
예제 #3
0
def compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, output_dir = None, dataset_names = None, data_treshold = 0.75):
    """ 
    Compare two series of raster maps by computing
    the relative bias, RMAE, Pearson-correlation coefficient and
    the Nash-Sutcliffe coefficient per pixel.
    
    Parameters
    ----------
    ds1_fhs : list
        list pointing to georeferenced raster files of dataset 1.
    ds1_dates : list
        list corresponding to ds1_fhs specifying the dates.
    ds2_fhs : list
        list pointing to georeferenced raster files of dataset 2.
    ds2_dates : list
        list corresponding to ds2_fhs specifying the dates.
    quantity_unit  : list, optional
        list of two strings describing the quantity and unit of the data. e.g. ['Precipitation', 'mm/month'].
    dataset_names : list, optional
        list of strings describing the names of the datasets. e.g. ['CHIRPS', 'ERA-I'].
    output_dir : list, optional
        directory to store some results, i.e. (1) a graph of the spatially averaged datasets trough time and the
        bias and (2) 4 geotiffs showing the bias, nash-sutcliffe coefficient, pearson coefficient and rmae per pixel.
    data_treshold : float, optional
        pixels with less than data_treshold * total_number_of_samples actual values are set to no-data, i.e. pixels with
        too few data points are ignored.
        
    Returns
    -------
    results : dict
        dictionary with four keys (relative bias, RMAE, Pearson-correlation coefficient and 
        the Nash-Sutcliffe) with 2dnarrays of the values per pixel.
        
    Examples
    --------
    >>> results = compare_rasters2rasters(ds1_fhs, ds1_dates, ds2_fhs, ds2_dates, 
                                          output_dir = r"C:/Desktop/", quantity_unit = ["P", "mm/month"], 
                                          dataset_names = ["CHIRPS", "TRMM"])
    """
    becgis.assert_proj_res_ndv([ds1_fhs, ds2_fhs])
    
    if dataset_names is None:
        dataset_names = ['DS1','DS2']
    
    driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(ds1_fhs[0])
    
    common_dates = becgis.common_dates([ds1_dates, ds2_dates])
    
    diff_sum = np.zeros((ysize,xsize))
    non_nans = np.zeros((ysize,xsize))
    
    progress = 0 
    samples = len(common_dates)
    
    for date in common_dates:
        
        DS1 = becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)
        DS2 = becgis.open_as_array(ds2_fhs[ds2_dates == date][0], nan_values = True)
        
        DS1[np.isnan(DS2)] = np.nan
        DS2[np.isnan(DS1)] = np.nan
        
        non_nans[~np.isnan(DS1)] += np.ones((ysize,xsize))[~np.isnan(DS1)]
        
        diff = (DS1 - DS2)**2
        diff_sum[~np.isnan(DS1)] += diff[~np.isnan(DS1)]
        
        progress += 1
        print("progress: {0} of {1} finished".format(progress, samples))

    diff_sum[non_nans <= data_treshold*samples] = np.nan
    results = dict()
    results['rmse'] = np.where(non_nans == 0., np.nan, np.sqrt(diff_sum / non_nans))
    
    startdate = common_dates[0].strftime('%Y%m%d')
    enddate = common_dates[-1].strftime('%Y%m%d')
    
    path = os.path.join(output_dir, 'spatial_errors')
    if not os.path.exists(path):
        os.makedirs(path)
        
    if output_dir is not None:
        for varname in list(results.keys()):
            fh = os.path.join(path, '{0}_{1}_vs_{2}_{3}_{4}.tif'.format(varname, dataset_names[0], dataset_names[1], startdate, enddate))
            becgis.create_geotiff(fh, results[varname], driver, NDV, xsize, ysize, GeoT, Projection)

    return results 
예제 #4
0
def compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir, station_names = None, quantity_unit = None, dataset_names = None, method = 'cubic', min_records = 1):
    """
    Compare a series of raster maps with station time series by computing
    the relative bias, RMAE, Pearson-correlation coefficient and 
    the Nash-Sutcliffe coefficient for each station.
    
    Parameters
    ----------
    ds1_fhs : 1dnarray
        List containing filehandles to georeferenced raster files.
    ds1_dates : 1dnarray
        List containing datetime.date or datetime.datetime objects corresponding
        to the filehandles in ds1_fhs. Lenght should be equal to ds1_fhs.
    station_dict : dictionary
        Dictionary containing coordinates of stations and timeseries. See examples
        below for an example
    output_dir : str, optional
        Directory to store several results, i.e. (1) a csv file to load in a GIS program, 
        (2) interpolated maps showing the various error indicators spatially and (3)
        scatter plots for all the stations.
    station_names : dictionary, optional
        Dictionary containing names of the respective stations which can be added to the csv-file, see
        Examples for more information.
    quantity_unit : list, optional
        List of two strings describing the quantity and unit of the data.
    dataset_name : list, optional
        List of strings describing the names of the datasets.
    method : str, optional
        Method used for interpolation of the error-indicators, i.e.: 'linear', 'nearest' or 'cubic' (default).
    
    Returns
    -------
    results : dictionary
        Dictionary containing several error indicators per station.

    Examples
    --------
    
    >>> station_dict = {(lat1, lon1): [(datetime.date(year, month, day), data_value), 
                                       (datetime.date(year, month, day), data_value), 
                                        etc.],
                        (lat2, lon2): [(datetime.date(year, month, day), data_value), 
                                       (datetime.date(year, month, day), data_value), 
                                        etc.],
                         etc.}
                    
    >>> station_names = {(lat1,lon1): 'stationname1', (lat2,lon2): 'stationname2', etc.}
    
    >>> results = compare_rasters2stations(ds1_fhs, ds1_dates, station_dict, output_dir = r"C:/Desktop",
                                station_names = None, quantity_unit = ["P", "mm/month"], 
                                dataset_names = ["CHIRPS", "Meteo Stations"], 
                                method = 'cubic')
    """
    results = dict()
    pixel_coordinates = list()
    
    if dataset_names is None:
        dataset_names = ['Spatial', 'Station']
    if quantity_unit is not None:
        quantity_unit[1] = r'[' + quantity_unit[1] + r']'
    else:
        quantity_unit = ['data', '']
        
    becgis.assert_proj_res_ndv([ds1_fhs])
    no_of_stations = len(list(station_dict.keys()))
    ds1_dates = becgis.convert_datetime_date(ds1_dates, out = 'datetime')

    for i, station in enumerate(station_dict.keys()):
        
        station_dates, station_values = unzip(station_dict[station])
        common_dates = becgis.common_dates([ds1_dates, station_dates])
        sample_size = common_dates.size
        
        if sample_size >= min_records:
            ds1_values = list()
            xpixel, ypixel = pixelcoordinates(station[0], station[1], ds1_fhs[0])
            
            if np.any([np.isnan(xpixel), np.isnan(ypixel)]):
                print("Skipping station ({0}), cause its not on the map".format(station))
                continue
            else:
                for date in common_dates:
                    ds1_values.append(becgis.open_as_array(ds1_fhs[ds1_dates == date][0], nan_values = True)[ypixel, xpixel])
                    
                common_station_values = [station_values[station_dates == date][0] for date in common_dates]
                
                results[station] = pairwise_validation(ds1_values, common_station_values)
                results[station] += (sample_size,)
                         
                pixel_coordinates.append((xpixel, ypixel))
                #m, b = np.polyfit(ds1_values, common_station_values, 1)  
                
                path_scatter = os.path.join(output_dir, 'scatter_plots')
                if not os.path.exists(path_scatter):
                    os.makedirs(path_scatter)
                    
                path_ts = os.path.join(output_dir, 'time_series')
                if not os.path.exists(path_ts):
                    os.makedirs(path_ts)
                    
                path_int = os.path.join(output_dir, 'interp_errors')
                if not os.path.exists(path_int):
                    os.makedirs(path_int)
                
                xlabel = '{0} {1} {2}'.format(dataset_names[0], quantity_unit[0], quantity_unit[1])
                ylabel = '{0} {1} {2}'.format(dataset_names[1], quantity_unit[0], quantity_unit[1])
                if station_names is not None:
                    title = station_names[station]
                    fn = os.path.join(path_scatter,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
                    fnts = os.path.join(path_ts,'{0}_vs_{1}.png'.format(station_names[station], dataset_names[0]))
                else:
                    title = station
                    fn = os.path.join(path_scatter,'{0}_vs_station_{1}.png'.format(dataset_names[0],i))
                    fnts = os.path.join(path_ts,'{0}_vs_station_{1}.png'.format(dataset_names[0],i)) 
                suptitle = 'pearson: {0:.5f}, rmse: {1:.5f}, ns: {2:.5f}, bias: {3:.5f}, n: {4:.0f}'.format(results[station][0],results[station][1],results[station][2],results[station][3],results[station][4])
                plot_scatter_series(ds1_values, common_station_values, xlabel, ylabel, title, fn, suptitle = suptitle, dates = common_dates)
    
                xaxis_label = '{0} {1}'.format(quantity_unit[0], quantity_unit[1])
                xlabel = '{0}'.format(dataset_names[0])
                ylabel = '{0}'.format(dataset_names[1])
                plot_time_series(ds1_values,common_station_values,common_dates,xlabel,ylabel,xaxis_label, title, fnts, suptitle = suptitle)
                
                print("station {0} ({3}) of {1} finished ({2} matching records)".format(i+1, no_of_stations, sample_size, title))
        else:
            print("____station {0} of {1} skipped____ (less than {2} matching records)".format(i+1, no_of_stations, min_records))
            continue
    
    n = len(results)
    csv_filename = os.path.join(output_dir, '{0}stations_vs_{1}_indicators.csv'.format(n, dataset_names[0]))
    with open(csv_filename, 'wb') as csv_file:
        writer = csv.writer(csv_file, delimiter=';')
        writer.writerow(['longitude','latitude','station_id','pearson','rmse','nash_sutcliffe','bias', 'no_of_samples'])
        for station in list(results.keys()):
            writer.writerow([station[1], station[0], station_names[station], results[station][0],results[station][1],results[station][2],results[station][3],results[station][4]])

    rslt = {'Relative Bias':list(),'RMSE':list(),'Pearson Coefficient':list(),'Nash-Sutcliffe Coefficient':list(),'Number Of Samples':list()}

    for value in list(results.values()):
        rslt['Relative Bias'].append(value[3])
        rslt['RMSE'].append(value[1])
        rslt['Pearson Coefficient'].append(value[0])
        rslt['Nash-Sutcliffe Coefficient'].append(value[2])
        rslt['Number Of Samples'].append(value[4])

    for key, value in list(rslt.items()):
        title = '{0}'.format(key)
        print(title)
        if key is 'RMSE':
            xlabel = '{0} [mm/month]'.format(key)
        else:
            xlabel = key
        value = np.array(value)
        value = value[(~np.isnan(value)) & (~np.isinf(value))]
        suptitle = 'mean: {0:.5f}, std: {1:.5f}, n: {2}'.format(np.nanmean(value), np.nanstd(value), n)
        print(value)
        plot_histogram(value[(~np.isnan(value)) & (~np.isinf(value))], title, xlabel, output_dir, suptitle = suptitle)
    
    driver, NDV, xsize, ysize, GeoT, Projection = becgis.get_geoinfo(ds1_fhs[0])
    dummy_map = becgis.open_as_array(ds1_fhs[0])
    grid = np.mgrid[0:ysize, 0:xsize]
    var_names = ['pearson', 'rmse', 'ns', 'bias', 'no_of_samples']

    for i, var in enumerate(unzip(list(results.values()))):
        xy = np.array(pixel_coordinates)[~np.isnan(var)]
        z = var[~np.isnan(var)]
        interpolation_field = interpolate.griddata(xy, z, (grid[1], grid[0]), method=method, fill_value = np.nanmean(z))
        interpolation_field[dummy_map == NDV] = NDV
        fh = os.path.join(path_int, '{0}_{1}stations_vs_{2}.tif'.format(var_names[i], len(xy), dataset_names[0]))
        becgis.create_geotiff(fh, interpolation_field, driver, NDV, xsize, ysize, GeoT, Projection)

    return results
예제 #5
0
def diagnosis_wp(metadata, complete_data, output_dir, waterpix):

    output_dir = os.path.join(output_dir)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    LU = becgis.open_as_array(metadata['lu'], nan_values=True)

    #    S = SortWaterPix(waterpix, 'Supply_M', output_dir)
    #    becgis.match_proj_res_ndv(metadata['lu'], becgis.list_files_in_folder(S), os.path.join(output_dir, "s_matched"))
    #    complete_data['supply'] = becgis.sort_files(os.path.join(output_dir, "s_matched"), [-10,-6], month_position = [-6,-4])[0:2]

    common_dates = becgis.common_dates([
        complete_data['p'][1], complete_data['et'][1], complete_data['tr'][1],
        complete_data['etb'][1]
    ])

    becgis.assert_proj_res_ndv([
        complete_data['p'][0], complete_data['et'][0], complete_data['tr'][0]
    ])

    balance_km3 = np.array([])

    p_km3 = np.array([])
    et_km3 = np.array([])
    ro_km3 = np.array([])

    balance_mm = np.array([])

    p_mm = np.array([])
    et_mm = np.array([])
    ro_mm = np.array([])

    area = becgis.map_pixel_area_km(metadata['lu'])

    for date in common_dates:

        print(date)

        P = complete_data['p'][0][complete_data['p'][1] == date][0]
        ET = complete_data['et'][0][complete_data['et'][1] == date][0]
        RO = complete_data['tr'][0][complete_data['tr'][1] == date][0]

        factor = 0.001 * 0.001 * area

        p = becgis.open_as_array(P, nan_values=True)
        et = becgis.open_as_array(ET, nan_values=True)
        ro = becgis.open_as_array(RO, nan_values=True)

        p[np.isnan(LU)] = et[np.isnan(LU)] = ro[np.isnan(LU)] = np.nan

        balance_km3 = np.append(
            balance_km3,
            np.nansum(p * factor) - np.nansum(et * factor) -
            np.nansum(ro * factor))
        p_km3 = np.append(p_km3, np.nansum(p * factor))
        et_km3 = np.append(et_km3, np.nansum(et * factor))
        ro_km3 = np.append(ro_km3, np.nansum(ro * factor))

        balance_mm = np.append(balance_mm,
                               np.nanmean(p) - np.nanmean(et) - np.nanmean(ro))
        p_mm = np.append(p_mm, np.nanmean(p))
        et_mm = np.append(et_mm, np.nanmean(et))
        ro_mm = np.append(ro_mm, np.nanmean(ro))

    relative_storage = np.cumsum(balance_km3) / np.mean(p_km3)

    ##
    # BASIC BASINSCALE WATERBALANCE (PRE-SHEETS)
    ##
    fig = plt.figure(1, figsize=(9, 6))
    plt.clf()
    fig.patch.set_alpha(0.7)

    ax2 = plt.gca()
    ax = ax2.twinx()

    ax2.bar(common_dates, relative_storage, width=25, color='#3ee871')

    ax2.grid(b=True, which='Major', color='0.65', linestyle='--', zorder=0)
    ax.bar([common_dates[0]], [0],
           label='$\sum dS / \overline{P}$',
           color='#3ee871')
    ax.plot(common_dates, np.cumsum(balance_km3), label='$\sum dS$')
    ax.plot(common_dates, np.cumsum(p_km3), label='$\sum (P)$')
    ax.plot(common_dates,
            np.cumsum(et_km3) + np.cumsum(ro_km3),
            label='$\sum (ET + RO)$')

    box = ax.get_position()
    ax.set_position(
        [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9])
    ax2.set_position(
        [box.x0, box.y0 + box.height * 0.1, box.width, box.height * 0.9])

    ax.legend(loc='upper center',
              bbox_to_anchor=(0.5, -0.1),
              fancybox=True,
              shadow=True,
              ncol=5)

    plt.suptitle(
        '$\sum P = {0:.1f}\;{4}, \\ \sum ET = {1:.1f}\;{4}, \sum RO = {2:.1f}\;{4}, \sum dS = {3:.1f}\;{4}$'
        .format(np.sum(p_km3), np.sum(et_km3), np.sum(ro_km3),
                np.sum(balance_km3), r"km^{3}"))
    plt.title(
        '{0}, ${5} = {2:.3f}\;{6}, {7} = {3:.3f}, dt = {4}\;months$'.format(
            metadata['name'], np.sum(balance_km3), np.mean(balance_km3),
            np.mean(relative_storage), len(p_km3), r"\overline{dS}", r"km^{3}",
            r"\overline{\sum dS / \overline{P}}"))
    plt.xlabel('Time')

    ax2.set_ylabel('Relative Storage [months of $\overline{P}$]')
    ax.set_ylabel('Stock [$km^{3}$]')
    #plt.savefig(os.path.join(output_dir, 'balance_{0}'.format(metadata['name'])))

    fig = plt.figure(2)
    plt.clf()

    ax2 = plt.gca()
    ax = ax2.twinx()

    ax2.plot(common_dates, p_mm, common_dates, et_mm, common_dates, ro_mm)
    ax.plot(common_dates, np.cumsum(balance_mm), 'k')