예제 #1
0
def conv_block(x,
               stage,
               branch,
               nb_filter,
               dropout_rate=None,
               weight_decay=1e-4):
    '''Apply BatchNorm, Relu, bottleneck 1x1 Conv2D, 3x3 Conv2D, and option dropout
        # Arguments
            x: input tensor
            stage: index for dense block
            branch: layer index within each dense block
            nb_filter: number of filters
            dropout_rate: dropout rate
            weight_decay: weight decay factor
    '''
    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_' + str(branch)
    relu_name_base = 'relu' + str(stage) + '_' + str(branch)

    # 1x1 Convolution (Bottleneck layer)
    inter_channel = nb_filter * 4
    x = BatchNormalization(epsilon=eps,
                           axis=concat_axis,
                           name=conv_name_base + '_x1_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base + '_x1_scale')(x)
    x = Activation('relu', name=relu_name_base + '_x1')(x)
    x = Convolution2D(inter_channel,
                      1,
                      1,
                      name=conv_name_base + '_x1',
                      bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    # 3x3 Convolution
    x = BatchNormalization(epsilon=eps,
                           axis=concat_axis,
                           name=conv_name_base + '_x2_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base + '_x2_scale')(x)
    x = Activation('relu', name=relu_name_base + '_x2')(x)
    x = ZeroPadding2D((1, 1), name=conv_name_base + '_x2_zeropadding')(x)
    x = Convolution2D(nb_filter, 3, 3, name=conv_name_base + '_x2',
                      bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x
def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
    '''conv_block is the block that has a conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: defualt 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
    And the shortcut should have subsample=(2,2) as well
    '''
    eps = 1.1e-5


    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    scale_name_base = 'scale' + str(stage) + block + '_branch'

    x = Convolution2D(nb_filter1, 1, 1, subsample=strides,
                      name=conv_name_base + '2a', bias=False)(input_tensor)
    x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2a')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x)
    x = Activation('relu', name=conv_name_base + '2a_relu')(x)

    x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x)
    x = Convolution2D(nb_filter2, kernel_size, kernel_size,
                      name=conv_name_base + '2b', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2b')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x)
    x = Activation('relu', name=conv_name_base + '2b_relu')(x)

    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2c')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x)

    shortcut = Convolution2D(nb_filter3, 1, 1, subsample=strides,
                             name=conv_name_base + '1', bias=False)(input_tensor)
    shortcut = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '1')(shortcut)
    shortcut = Scale(axis=bn_axis, name=scale_name_base + '1')(shortcut)

    x = merge([x, shortcut], mode='sum', name='res' + str(stage) + block)
    x = Activation('relu', name='res' + str(stage) + block + '_relu')(x)
    return x
예제 #3
0
def identity_block(input_tensor, kernel_size, filters, stage, block):
    '''The identity_block is the block that has no conv layer at shortcut
    # Arguments
        input_tensor: input tensor
        kernel_size: default 3, the kernel size of middle conv layer at main path
        filters: list of integers, the nb_filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
    '''
    eps = 1.1e-5
    nb_filter1, nb_filter2, nb_filter3 = filters
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'
    scale_name_base = 'scale' + str(stage) + block + '_branch'

    x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a',
                      bias=False)(input_tensor)
    x = BatchNormalization(epsilon=eps, axis=bn_axis,
                           name=bn_name_base + '2a')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x)
    x = Activation('relu', name=conv_name_base + '2a_relu')(x)

    x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x)
    x = Convolution2D(nb_filter2,
                      kernel_size,
                      kernel_size,
                      name=conv_name_base + '2b',
                      bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis,
                           name=bn_name_base + '2b')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x)
    x = Activation('relu', name=conv_name_base + '2b_relu')(x)

    x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c',
                      bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis,
                           name=bn_name_base + '2c')(x)
    x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x)

    x = merge([x, input_tensor], mode='sum', name='res' + str(stage) + block)
    x = Activation('relu', name='res' + str(stage) + block + '_relu')(x)
    return x
def resnet101_model(weights_path=None):
    '''Instantiate the ResNet101 architecture,
    # Arguments
        weights_path: path to pretrained weight file
    # Returns
        A Keras model instance.
    '''
    eps = 1.1e-5

    # Handle Dimension Ordering for different backends
    global bn_axis
    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
        img_input = Input(shape=(224, 224, 3), name='data')
    else:
        bn_axis = 1
        img_input = Input(shape=(3, 224, 224), name='data')

    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis, name='bn_conv1')(x)
    x = Scale(axis=bn_axis, name='scale_conv1')(x)
    x = Activation('relu', name='conv1_relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    for i in range(1, 3):
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b' + str(i))

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    for i in range(1, 23):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b' + str(i))

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x_fc = AveragePooling2D((7, 7), name='avg_pool')(x)
    x_fc = Flatten()(x_fc)
    x_fc = Dense(1000, activation='softmax', name='fc1000')(x_fc)

    model = Model(img_input, x_fc)

    # load weights
    if weights_path:
        model.load_weights(weights_path, by_name=True)

    return model
예제 #5
0
def transition_block(x,
                     stage,
                     nb_filter,
                     compression=1.0,
                     dropout_rate=None,
                     weight_decay=1E-4):
    ''' Apply BatchNorm, 1x1 Convolution, averagePooling, optional compression, dropout
        # Arguments
            x: input tensor
            stage: index for dense block
            nb_filter: number of filters
            compression: calculated as 1 - reduction. Reduces the number of feature maps in the transition block.
            dropout_rate: dropout rate
            weight_decay: weight decay factor
    '''

    eps = 1.1e-5
    conv_name_base = 'conv' + str(stage) + '_blk'
    relu_name_base = 'relu' + str(stage) + '_blk'
    pool_name_base = 'pool' + str(stage)

    x = BatchNormalization(epsilon=eps,
                           axis=concat_axis,
                           name=conv_name_base + '_bn')(x)
    x = Scale(axis=concat_axis, name=conv_name_base + '_scale')(x)
    x = Activation('relu', name=relu_name_base)(x)
    x = Convolution2D(int(nb_filter * compression),
                      1,
                      1,
                      name=conv_name_base,
                      bias=False)(x)

    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    x = AveragePooling2D((2, 2), strides=(2, 2), name=pool_name_base)(x)

    return x
예제 #6
0
def DenseNet_169(nb_dense_block=4,
                 growth_rate=32,
                 nb_filter=64,
                 reduction=0.0,
                 dropout_rate=0.0,
                 weight_decay=1e-4,
                 classes=1000,
                 weights_path=None):
    '''Instantiate the DenseNet architecture,
        # Arguments
            nb_dense_block: number of dense blocks to add to end
            growth_rate: number of filters to add per dense block
            nb_filter: initial number of filters
            reduction: reduction factor of transition blocks.
            dropout_rate: dropout rate
            weight_decay: weight decay factor
            classes: optional number of classes to classify images
            weights_path: path to pre-trained weights
        # Returns
            A Keras model instance.
    '''
    eps = 1.1e-5

    # compute compression factor
    compression = 1.0 - reduction

    # Handle Dimension Ordering for different backends
    global concat_axis
    if K.image_dim_ordering() == 'tf':
        concat_axis = 3
        img_input = Input(shape=(224, 224, 3), name='data')
    else:
        concat_axis = 1
        img_input = Input(shape=(3, 224, 224), name='data')

    # From architecture for ImageNet (Table 1 in the paper)
    nb_filter = 64
    nb_layers = [6, 12, 32, 32]  # For DenseNet-169

    # Initial convolution
    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(nb_filter,
                      7,
                      7,
                      subsample=(2, 2),
                      name='conv1',
                      bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=concat_axis, name='conv1_bn')(x)
    x = Scale(axis=concat_axis, name='conv1_scale')(x)
    x = Activation('relu', name='relu1')(x)
    x = ZeroPadding2D((1, 1), name='pool1_zeropadding')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    # Add dense blocks
    for block_idx in range(nb_dense_block - 1):
        stage = block_idx + 2
        x, nb_filter = dense_block(x,
                                   stage,
                                   nb_layers[block_idx],
                                   nb_filter,
                                   growth_rate,
                                   dropout_rate=dropout_rate,
                                   weight_decay=weight_decay)

        # Add transition_block
        x = transition_block(x,
                             stage,
                             nb_filter,
                             compression=compression,
                             dropout_rate=dropout_rate,
                             weight_decay=weight_decay)
        nb_filter = int(nb_filter * compression)

    final_stage = stage + 1
    x, nb_filter = dense_block(x,
                               final_stage,
                               nb_layers[-1],
                               nb_filter,
                               growth_rate,
                               dropout_rate=dropout_rate,
                               weight_decay=weight_decay)

    x = BatchNormalization(epsilon=eps,
                           axis=concat_axis,
                           name='conv' + str(final_stage) + '_blk_bn')(x)
    x = Scale(axis=concat_axis,
              name='conv' + str(final_stage) + '_blk_scale')(x)
    x = Activation('relu', name='relu' + str(final_stage) + '_blk')(x)
    x = GlobalAveragePooling2D(name='pool' + str(final_stage))(x)

    x = Dense(classes, name='fc6')(x)
    x = Activation('softmax', name='prob')(x)

    model = Model(img_input, x, name='densenet')

    if weights_path is not None:
        model.load_weights(weights_path)

    return model
예제 #7
0
def resnet152_model(img_rows, img_cols, color_type=1, num_classes=None):
    """
    Resnet 152 Model for Keras

    Model Schema and layer naming follow that of the original Caffe implementation
    https://github.com/KaimingHe/deep-residual-networks

    ImageNet Pretrained Weights 
    Theano: https://drive.google.com/file/d/0Byy2AcGyEVxfZHhUT3lWVWxRN28/view?usp=sharing
    TensorFlow: https://drive.google.com/file/d/0Byy2AcGyEVxfeXExMzNNOHpEODg/view?usp=sharing

    Parameters:
      img_rows, img_cols - resolution of inputs
      channel - 1 for grayscale, 3 for color 
      num_classes - number of class labels for our classification task
    """
    eps = 1.1e-5

    # Handle Dimension Ordering for different backends
    global bn_axis
    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
        img_input = Input(shape=(img_rows, img_cols, color_type), name='data')
    else:
        bn_axis = 1
        img_input = Input(shape=(color_type, img_rows, img_cols), name='data')

    x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
    x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x)
    x = BatchNormalization(epsilon=eps, axis=bn_axis, name='bn_conv1')(x)
    x = Scale(axis=bn_axis, name='scale_conv1')(x)
    x = Activation('relu', name='conv1_relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    for i in range(1, 8):
        x = identity_block(x, 3, [128, 128, 512], stage=3, block='b' + str(i))

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    for i in range(1, 36):
        x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b' + str(i))

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    x_fc = AveragePooling2D((7, 7), name='avg_pool')(x)
    x_fc = Flatten()(x_fc)
    x_fc = Dense(1000, activation='softmax', name='fc1000')(x_fc)

    model = Model(img_input, x_fc)

    if K.image_dim_ordering() == 'th':
        # Use pre-trained weights for Theano backend
        weights_path = WEIGHTS_PATH + 'resnet152_weights_th.h5'
    else:
        # Use pre-trained weights for Tensorflow backend
        weights_path = WEIGHTS_PATH + 'resnet152_weights_tf.h5'

    model.load_weights(weights_path, by_name=True)

    return model